A321931 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in M(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and M is augmented monomial symmetric functions.
1, 1, 0, -1, 1, 1, 0, 0, -1, 1, 0, 2, -3, 1, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, 2, -1, -2, 1, 0, -6, 3, 8, -6, 1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 2, -1, -2, 1, 0, 0, 0, 2, -2, -1, 0, 1, 0, 0, -6, 6, 5, -3, -3, 1, 0
Offset: 1
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): 1 (11): -1 1 . (3): 1 (21): -1 1 (111): 2 -3 1 . (4): 1 (22): -1 1 (31): -1 1 (211): 2 -1 -2 1 (1111): -6 3 8 -6 1 . (5): 1 (41): -1 1 (32): -1 1 (221): 2 -1 -2 1 (311): 2 -2 -1 1 (2111): -6 6 5 -3 -3 1 (11111): 24 30 20 15 20 10 1 For example, row 14 gives: M(32) = -p(5) + p(32).
Links
- Wikipedia, Symmetric polynomial
Comments