This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321932 #6 Nov 23 2018 21:13:47 %S A321932 1,-1,1,0,1,2,-3,1,0,-1,1,0,0,1,-6,3,8,-6,1,0,1,0,-2,1,0,0,2,-3,1,0,0, %T A321932 0,-1,1,0,0,0,0,1,24,-30,-20,15,20,-10,1,0,-6,0,3,8,-6,1,0,0,-2,3,2, %U A321932 -4,1,0,0,0,1,0,-2,1,0,0,0,0,2,-3,1,0,0,0,0,0 %N A321932 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in e(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and e is elementary symmetric functions. %C A321932 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321932 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321932 Tetrangle begins (zeros not shown): %e A321932 (1): 1 %e A321932 . %e A321932 (2): -1 1 %e A321932 (11): 1 %e A321932 . %e A321932 (3): 2 -3 1 %e A321932 (21): -1 1 %e A321932 (111): 1 %e A321932 . %e A321932 (4): -6 3 8 -6 1 %e A321932 (22): 1 -2 1 %e A321932 (31): 2 -3 1 %e A321932 (211): -1 1 %e A321932 (1111): 1 %e A321932 . %e A321932 (5): 24 30 20 15 20 10 1 %e A321932 (41): -6 3 8 -6 1 %e A321932 (32): -2 3 2 -4 1 %e A321932 (221): 1 -2 1 %e A321932 (311): 2 -3 1 %e A321932 (2111): -1 1 %e A321932 (11111): 1 %e A321932 For example, row 14 gives: 12e(32) = -2p(32) + 3p(221) + 2p(311) - 4p(2111) + p(11111). %Y A321932 Row sums are A134286. This is a regrouping of the triangle A321896. %Y A321932 Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321932 sign,tabf %O A321932 1,6 %A A321932 _Gus Wiseman_, Nov 23 2018