cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321933 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.

This page as a plain text file.
%I A321933 #6 Nov 23 2018 21:13:57
%S A321933 1,1,1,0,1,2,3,1,0,1,1,0,0,1,6,3,8,6,1,0,1,0,2,1,0,0,2,3,1,0,0,0,1,1,
%T A321933 0,0,0,0,1,24,30,20,15,20,10,1,0,6,0,3,8,6,1,0,0,2,3,2,4,1,0,0,0,1,0,
%U A321933 2,1,0,0,0,0,2,3,1,0,0,0,0,0,1,1,0,0,0,0
%N A321933 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.
%C A321933 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A321933 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a>
%e A321933 Tetrangle begins (zeros not shown):
%e A321933   (1):  1
%e A321933 .
%e A321933   (2):   1  1
%e A321933   (11):     1
%e A321933 .
%e A321933   (3):    2  3  1
%e A321933   (21):      1  1
%e A321933   (111):        1
%e A321933 .
%e A321933   (4):     6  3  8  6  1
%e A321933   (22):       1     2  1
%e A321933   (31):          2  3  1
%e A321933   (211):            1  1
%e A321933   (1111):              1
%e A321933 .
%e A321933   (5):     24 30 20 15 20 10  1
%e A321933   (41):        6     3  8  6  1
%e A321933   (32):           2  3  2  4  1
%e A321933   (221):             1     2  1
%e A321933   (311):                2  3  1
%e A321933   (2111):                  1  1
%e A321933   (11111):                    1
%e A321933 For example, row 14 gives: 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111).
%Y A321933 This is a regrouping of the triangle A321897.
%Y A321933 Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935.
%K A321933 nonn,tabf
%O A321933 1,6
%A A321933 _Gus Wiseman_, Nov 23 2018