This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321933 #6 Nov 23 2018 21:13:57 %S A321933 1,1,1,0,1,2,3,1,0,1,1,0,0,1,6,3,8,6,1,0,1,0,2,1,0,0,2,3,1,0,0,0,1,1, %T A321933 0,0,0,0,1,24,30,20,15,20,10,1,0,6,0,3,8,6,1,0,0,2,3,2,4,1,0,0,0,1,0, %U A321933 2,1,0,0,0,0,2,3,1,0,0,0,0,0,1,1,0,0,0,0 %N A321933 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in h(u) * Product_i u_i!, where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions. %C A321933 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A321933 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321933 Tetrangle begins (zeros not shown): %e A321933 (1): 1 %e A321933 . %e A321933 (2): 1 1 %e A321933 (11): 1 %e A321933 . %e A321933 (3): 2 3 1 %e A321933 (21): 1 1 %e A321933 (111): 1 %e A321933 . %e A321933 (4): 6 3 8 6 1 %e A321933 (22): 1 2 1 %e A321933 (31): 2 3 1 %e A321933 (211): 1 1 %e A321933 (1111): 1 %e A321933 . %e A321933 (5): 24 30 20 15 20 10 1 %e A321933 (41): 6 3 8 6 1 %e A321933 (32): 2 3 2 4 1 %e A321933 (221): 1 2 1 %e A321933 (311): 2 3 1 %e A321933 (2111): 1 1 %e A321933 (11111): 1 %e A321933 For example, row 14 gives: 12h(32) = 2p(32) + 3p(221) + 2p(311) + 4p(2111) + p(11111). %Y A321933 This is a regrouping of the triangle A321897. %Y A321933 Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321933 nonn,tabf %O A321933 1,6 %A A321933 _Gus Wiseman_, Nov 23 2018