This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321934 #6 Nov 23 2018 21:14:05 %S A321934 1,-1,0,1,1,1,0,0,-1,-1,0,2,3,1,-1,0,0,0,0,1,1,0,0,0,1,0,1,0,0,-2,-1, %T A321934 -2,-1,0,6,3,8,6,1,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,-1,0,-1,0,0,0,0,2,1, %U A321934 2,1,0,0,0,2,2,1,0,1,0,0,-6,-6,-5,-3,-3,-1,0 %N A321934 Tetrangle where T(n,H(u),H(v)) is the coefficient of p(v) in F(u), where u and v are integer partitions of n, H is Heinz number, p is power sum symmetric functions, and F is augmented forgotten symmetric functions. %C A321934 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %C A321934 The augmented forgotten symmetric functions are given by F(y) = c(y) * f(y) where f is forgotten symmetric functions and c(y) = Product_i (y)_i!, where (y)_i is the number of i's in y. %H A321934 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_polynomial">Symmetric polynomial</a> %e A321934 Tetrangle begins (zeros not shown): %e A321934 (1): 1 %e A321934 . %e A321934 (2): -1 %e A321934 (11): 1 1 %e A321934 . %e A321934 (3): 1 %e A321934 (21): -1 -1 %e A321934 (111): 2 3 1 %e A321934 . %e A321934 (4): -1 %e A321934 (22): 1 1 %e A321934 (31): 1 1 %e A321934 (211): -2 -1 -2 -1 %e A321934 (1111): 6 3 8 6 1 %e A321934 . %e A321934 (5): 1 %e A321934 (41): -1 -1 %e A321934 (32): -1 -1 %e A321934 (221): 2 1 2 1 %e A321934 (311): 2 2 1 1 %e A321934 (2111): -6 -6 -5 -3 -3 -1 %e A321934 (11111): 24 30 20 15 20 10 1 %e A321934 For example, row 14 gives: F(32) = -p(5) - p(32). %Y A321934 Row sums are A178803. Up to sign, same as A321931. This is a regrouping of the triangle A321899. %Y A321934 Cf. A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. %K A321934 sign,tabf %O A321934 1,12 %A A321934 _Gus Wiseman_, Nov 23 2018