A321935 Tetrangle: T(n,H(u),H(v)) is the coefficient of p(v) in S(u), where u and v are integer partitions of n, H is Heinz number, p is the basis of power sum symmetric functions, and S is the basis of augmented Schur functions.
1, 1, 1, -1, 1, 2, 3, 1, -1, 0, 1, 2, -3, 1, 6, 3, 8, 6, 1, 0, 3, -4, 0, 1, -2, -1, 0, 2, 1, 2, -1, 0, -2, 1, -6, 3, 8, -6, 1, 24, 30, 20, 15, 20, 10, 1, -6, 0, -5, 0, 5, 5, 1, 0, -6, 4, 3, -4, 2, 1, 0, 6, -4, 3, -4, -2, 1, 4, 0, 0, -5, 0, 0, 1, -6, 0, 5, 0, 5
Offset: 1
Examples
Tetrangle begins (zeros not shown): (1): 1 . (2): 1 1 (11): -1 1 . (3): 2 3 1 (21): -1 1 (111): 2 -3 1 . (4): 6 3 8 6 1 (22): 3 -4 1 (31): -2 -1 2 1 (211): 2 -1 -2 1 (1111): -6 3 8 -6 1 . (5): 24 30 20 15 20 10 1 (41): -6 -5 5 5 1 (32): -6 4 3 -4 2 1 (221): 6 -4 3 -4 -2 1 (311): 4 -5 1 (2111): -6 5 5 -5 1 (11111): 24 30 20 15 20 10 1 For example, row 14 gives: S(32) = 4p(32) - 6p(41) + 3p(221) - 4p(311) + 2p(2111) + p(11111).
Links
- Wikipedia, Symmetric polynomial
Comments