cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321937 Numerators of the Maclaurin coefficients of exp(1/x - 1/(exp(x)-1) - 1/2).

Original entry on oeis.org

1, -1, 1, 67, -283, -5911, 269891, 114551, -9390523, -1021798901, 273468378049, 3918564638257, -872697935308349, -131115162268691, 1397912875942181, 2172284899403876321, -3926446823184958835813, -284746035618826337921, 286113629384558337084185927
Offset: 0

Views

Author

Richard P. Brent, Nov 22 2018

Keywords

Comments

The Maclaurin coefficients arise in a theorem of Slater (1960) on asymptotic expansions of confluent hypergeometric functions, see Sec. 3.1 of the paper by Temme (2013), and Theorem 5 of the preprint by Brent et al. (2018).

Examples

			For n=0..3 the Maclaurin coefficients are 1, -1/12, 1/288, 67/61840.
		

References

  • L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.

Crossrefs

Denominators are A321938.

Programs

  • Maple
    A321937List := proc(len) local mu, ser;
    mu  := h -> sum(bernoulli(2*k)/(2*k)!*h^(2*k-1), k=1..infinity);
    ser := series(exp(mu(-h)), h, len+2): seq(numer(coeff(ser,h,n)), n=0..len) end:
    A321937List(18); # Peter Luschny, Dec 05 2018
  • Mathematica
    Exp[1/x - 1/(Exp[x]-1) - 1/2] + O[x]^20 // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    x='x+O('x^25); apply(numerator ,Vec(exp(1/x - 1/(exp(x)-1) - 1/2))) \\ Joerg Arndt, Dec 05 2018