A321940 Denominators in the asymptotic expansion of the Maclaurin coefficients of exp(x/(1-x)).
1, 48, 4608, 3317760, 127401984, 214035333120, 308210879692800, 2958824445050880, 5680942934497689600, 134979204123665104896000, 18141205034220590098022400, 56600559706768241105829888000
Offset: 0
Examples
The asymptotic expansion is 1 - 5*h/48 - 479*h^2/4608 - 15313*h^3/3317760 + ..., where h = 1/sqrt(n).
References
- L. J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, 1960.
Links
- Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
- N. M. Temme, Remarks on Slater's asymptotic expansions of Kummer functions for large values of the a-parameter, Adv. Dyn. Syst. Appl., 8 (2013), 365-377.
Crossrefs
Formula
A formula is given in Theorem 5, and a recurrence in Lemma 7, of Brent et al. (2018).
Comments