A321941 Scaled numerators in the asymptotic expansion of the Maclaurin coefficients in a Hadamard product involving the exponential integral.
1, -14, 86, -3660, -1042202, -247948260, -108448540420, -67825082899288, -56771982322924154, -61577812542004343156, -84012331763021201187180, -140805160243370476949256616, -284390871665315095422337087524
Offset: 0
Examples
The asymptotic expansion (defined in Corollary 10 of Brent et al. (2018)) has coefficients 1, -7/32, 43/2048, -915/65536, ... Multiplying by consecutive powers of 64 gives 1, -14, 86, -3660, ...
Links
- Richard P. Brent, Table of n, a(n) for n = 0..50
- Richard P. Brent, M. L. Glasser, Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
- NIST Digital Library of Mathematical Functions, Confluent Hypergeometric Functions
Formula
A recurrence is given in Corollary 17 of Brent et al. (2018).
Comments