cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321960 Array of sequences read by descending antidiagonals, A(n) the Jacobi square of the sequence n, n+1, n+2, ....

This page as a plain text file.
%I A321960 #13 Jul 13 2019 03:34:01
%S A321960 1,0,1,0,1,1,0,2,2,1,0,5,6,3,1,0,15,22,12,4,1,0,52,92,57,20,5,1,0,203,
%T A321960 426,303,116,30,6,1,0,877,2146,1752,744,205,42,7,1,0,4140,11624,10845,
%U A321960 5140,1535,330,56,8,1,0,21147,67146,71139,37676,12300,2820,497,72,9,1
%N A321960 Array of sequences read by descending antidiagonals, A(n) the Jacobi square of the sequence n, n+1, n+2, ....
%C A321960 For definitions and comments see A321964.
%F A321960 T(n, k) = A(n)[k] where A(n) is the Jacobi square of the sequence s(j) = n + j, j >= 0.
%e A321960 First few rows of the array start:
%e A321960 [0] 1, 0,  0,   0,    0,     0,      0,       0,        0, ... A000007
%e A321960 [1] 1, 1,  2,   5,   15,    52,    203,     877,     4140, ... A000110
%e A321960 [2] 1, 2,  6,  22,   92,   426,   2146,   11624,    67146, ... A074664
%e A321960 [3] 1, 3, 12,  57,  303,  1752,  10845,   71139,   491064, ... A321959
%e A321960 [4] 1, 4, 20, 116,  744,  5140,  37676,  290224,  2334300, ...
%e A321960 [5] 1, 5, 30, 205, 1535, 12300, 103975,  918785,  8434740, ...
%e A321960 [6] 1, 6, 42, 330, 2820, 25662, 245358, 2443272, 25188870, ...
%e A321960 [7] 1, 7, 56, 497, 4767, 48496, 516761, 5719399, 65369136, ...
%e A321960 Seen as triangle:
%e A321960 [0] 1;
%e A321960 [1] 0,   1;
%e A321960 [2] 0,   1,    1;
%e A321960 [3] 0,   2,    2,    1;
%e A321960 [4] 0,   5,    6,    3,   1;
%e A321960 [5] 0,  15,   22,   12,   4,   1;
%e A321960 [6] 0,  52,   92,   57,  20,   5,  1;
%e A321960 [7] 0, 203,  426,  303, 116,  30,  6, 1;
%e A321960 [8] 0, 877, 2146, 1752, 744, 205, 42, 7, 1;
%p A321960 # The function JacobiSquare is defined in A321964.
%p A321960 s := n -> [seq(n+k, k = 0..9)]: Trow := n -> JacobiSquare(s(n)):
%p A321960 for n from 0 to 7 do lprint(Trow(n)) od;
%t A321960 nmax = 10;
%t A321960 JacobiCF[a_, b_, p_:2] := Module[{m, k}, m = 1; For[k = Length[a], k >= 1, k--, m = 1 - b[[k]]*x - a[[k]]*x^p/m]; 1/m];
%t A321960 JacobiSquare[a_, p_: 2] := Module[{cf, ser}, cf = JacobiCF[a, a, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ser, x]];
%t A321960 s[n_] := Table[n + k, {k, 0, nmax}];
%t A321960 row[n_] := row[n] = JacobiSquare[s[n]];
%t A321960 T[_, 0] = 1; T[0, _] = 0; T[n_, k_] := row[n][[k + 1]];
%t A321960 Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Jul 13 2019, after _Peter Luschny_ in A321964 *)
%o A321960 (Sage)
%o A321960 def JacobiCF(a, b, dim, p=2):
%o A321960     m = 1
%o A321960     for k in range(dim-1, -1, -1):
%o A321960         m = 1 - b(k)*x - a(k)*x^p/m
%o A321960     return 1/m
%o A321960 def JacobiGF(a, b, dim, p=2):
%o A321960     cf = JacobiCF(a, b, dim, p)
%o A321960     return cf.series(x, dim).list()
%o A321960 def JacobiSquare(a, dim, p=2):
%o A321960     cf = JacobiCF(a, a, dim, p)
%o A321960     return cf.series(x, dim).list()
%o A321960 def StieltjesGF(a, dim, p=2):
%o A321960     return JacobiGF(a, lambda n: 0, dim, p)
%o A321960 def Trow(n): return JacobiSquare(lambda k: n+k, 10)
%o A321960 for n in (0..4): print(Trow(n))
%Y A321960 Rows of array: A000007, A000110, A074664, A321959.
%Y A321960 Columns include: A002378, A033445. Row sums of triangle: A321958.
%Y A321960 Cf. A321964.
%K A321960 nonn,tabl
%O A321960 0,8
%A A321960 _Peter Luschny_, Dec 27 2018