This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321960 #13 Jul 13 2019 03:34:01 %S A321960 1,0,1,0,1,1,0,2,2,1,0,5,6,3,1,0,15,22,12,4,1,0,52,92,57,20,5,1,0,203, %T A321960 426,303,116,30,6,1,0,877,2146,1752,744,205,42,7,1,0,4140,11624,10845, %U A321960 5140,1535,330,56,8,1,0,21147,67146,71139,37676,12300,2820,497,72,9,1 %N A321960 Array of sequences read by descending antidiagonals, A(n) the Jacobi square of the sequence n, n+1, n+2, .... %C A321960 For definitions and comments see A321964. %F A321960 T(n, k) = A(n)[k] where A(n) is the Jacobi square of the sequence s(j) = n + j, j >= 0. %e A321960 First few rows of the array start: %e A321960 [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 %e A321960 [1] 1, 1, 2, 5, 15, 52, 203, 877, 4140, ... A000110 %e A321960 [2] 1, 2, 6, 22, 92, 426, 2146, 11624, 67146, ... A074664 %e A321960 [3] 1, 3, 12, 57, 303, 1752, 10845, 71139, 491064, ... A321959 %e A321960 [4] 1, 4, 20, 116, 744, 5140, 37676, 290224, 2334300, ... %e A321960 [5] 1, 5, 30, 205, 1535, 12300, 103975, 918785, 8434740, ... %e A321960 [6] 1, 6, 42, 330, 2820, 25662, 245358, 2443272, 25188870, ... %e A321960 [7] 1, 7, 56, 497, 4767, 48496, 516761, 5719399, 65369136, ... %e A321960 Seen as triangle: %e A321960 [0] 1; %e A321960 [1] 0, 1; %e A321960 [2] 0, 1, 1; %e A321960 [3] 0, 2, 2, 1; %e A321960 [4] 0, 5, 6, 3, 1; %e A321960 [5] 0, 15, 22, 12, 4, 1; %e A321960 [6] 0, 52, 92, 57, 20, 5, 1; %e A321960 [7] 0, 203, 426, 303, 116, 30, 6, 1; %e A321960 [8] 0, 877, 2146, 1752, 744, 205, 42, 7, 1; %p A321960 # The function JacobiSquare is defined in A321964. %p A321960 s := n -> [seq(n+k, k = 0..9)]: Trow := n -> JacobiSquare(s(n)): %p A321960 for n from 0 to 7 do lprint(Trow(n)) od; %t A321960 nmax = 10; %t A321960 JacobiCF[a_, b_, p_:2] := Module[{m, k}, m = 1; For[k = Length[a], k >= 1, k--, m = 1 - b[[k]]*x - a[[k]]*x^p/m]; 1/m]; %t A321960 JacobiSquare[a_, p_: 2] := Module[{cf, ser}, cf = JacobiCF[a, a, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ser, x]]; %t A321960 s[n_] := Table[n + k, {k, 0, nmax}]; %t A321960 row[n_] := row[n] = JacobiSquare[s[n]]; %t A321960 T[_, 0] = 1; T[0, _] = 0; T[n_, k_] := row[n][[k + 1]]; %t A321960 Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Jul 13 2019, after _Peter Luschny_ in A321964 *) %o A321960 (Sage) %o A321960 def JacobiCF(a, b, dim, p=2): %o A321960 m = 1 %o A321960 for k in range(dim-1, -1, -1): %o A321960 m = 1 - b(k)*x - a(k)*x^p/m %o A321960 return 1/m %o A321960 def JacobiGF(a, b, dim, p=2): %o A321960 cf = JacobiCF(a, b, dim, p) %o A321960 return cf.series(x, dim).list() %o A321960 def JacobiSquare(a, dim, p=2): %o A321960 cf = JacobiCF(a, a, dim, p) %o A321960 return cf.series(x, dim).list() %o A321960 def StieltjesGF(a, dim, p=2): %o A321960 return JacobiGF(a, lambda n: 0, dim, p) %o A321960 def Trow(n): return JacobiSquare(lambda k: n+k, 10) %o A321960 for n in (0..4): print(Trow(n)) %Y A321960 Rows of array: A000007, A000110, A074664, A321959. %Y A321960 Columns include: A002378, A033445. Row sums of triangle: A321958. %Y A321960 Cf. A321964. %K A321960 nonn,tabl %O A321960 0,8 %A A321960 _Peter Luschny_, Dec 27 2018