cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321964 Array of sequences read by descending antidiagonals, row A(n) is Stieltjes generated from the sequence n, n+1, n+2, n+3, ....

This page as a plain text file.
%I A321964 #26 Mar 24 2020 13:25:12
%S A321964 1,0,1,0,1,1,0,3,2,1,0,15,10,3,1,0,105,74,21,4,1,0,945,706,207,36,5,1,
%T A321964 0,10395,8162,2529,444,55,6,1,0,135135,110410,36243,6636,815,78,7,1,0,
%U A321964 2027025,1708394,591381,114084,14425,1350,105,8,1
%N A321964 Array of sequences read by descending antidiagonals, row A(n) is Stieltjes generated from the sequence n, n+1, n+2, n+3, ....
%H A321964 P. Flajolet, <a href="http://dx.doi.org/10.1016/0012-365X(80)90050-3">Combinatorial aspects of continued fractions</a>, Discrete Mathematics 32 (1980), pp. 125-161.
%H A321964 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009.
%F A321964 We say a sequence R is Jacobi generated by the sequences U and V if R are the coefficients of the series expansion of the Jacobi continued fraction, recursively defined by m = 1 - V(k)*x - U(k)*x^p/m, starting m = 1 and terminating with 1/m, k iterating downwards from a given length to 1. p is some integer (in the classic case p = 2). R is Stieltjes generated if it is Jacobi generated with V(k) = 0 for all k.
%F A321964 In this array the rows are Stieltjes generated with p = 1 from the sequence s(j) = n + j, j >= 0. T(n, k) = A(n)[k] for n >= 0 and k >= 0.
%e A321964 First few rows of the array start:
%e A321964 [0] 1, 0,  0,    0,     0,      0,        0,         0, ... A000007
%e A321964 [1] 1, 1,  3,   15,   105,    945,    10395,    135135, ... A001147
%e A321964 [2] 1, 2, 10,   74,   706,   8162,   110410,   1708394, ... A000698
%e A321964 [3] 1, 3, 21,  207,  2529,  36243,   591381,  10786527, ... A167872
%e A321964 [4] 1, 4, 36,  444,  6636, 114084,  2194596,  46460124, ... A321963
%e A321964 [5] 1, 5, 55,  815, 14425, 289925,  6444175, 155928575, ...
%e A321964 [6] 1, 6, 78, 1350, 27630, 636390, 16074990, 438572070, ...
%e A321964 Seen as triangle:
%e A321964 [0] 1;
%e A321964 [1] 0,      1;
%e A321964 [2] 0,      1,      1;
%e A321964 [3] 0,      3,      2,     1;
%e A321964 [4] 0,     15,     10,     3,    1;
%e A321964 [5] 0,    105,     74,    21,    4,   1;
%e A321964 [6] 0,    945,    706,   207,   36,   5,  1;
%e A321964 [7] 0,  10395,   8162,  2529,  444,  55,  6, 1;
%e A321964 [8] 0, 135135, 110410, 36243, 6636, 815, 78, 7, 1;
%p A321964 JacobiCF := proc(a, b, p:=2) local m, k;
%p A321964     m := 1;
%p A321964     for k from nops(a) by -1 to 1 do
%p A321964         m := 1 - b[k]*x - a[k]*x^p/m od;
%p A321964     return 1/m end:
%p A321964 JacobiGF := proc(a, b, p:=2) local cf, l, ser;
%p A321964     cf := JacobiCF(a, b, p);
%p A321964     l := min(nops(a), nops(b));
%p A321964     ser := series(cf, x, l);
%p A321964     seq(coeff(ser, x, n), n = 0..l-1) end:
%p A321964 JacobiSquare := proc(a, p:=2) local cf, ser;
%p A321964     cf := JacobiCF(a, a, p);
%p A321964     ser := series(cf, x, nops(a));
%p A321964     seq(coeff(ser, x, n), n = 0..nops(a)-1) end:
%p A321964 StieltjesGF := proc(a, p:=2) local z, cf, ser;
%p A321964     z := [seq(0, n = 1..nops(a))];
%p A321964     cf := JacobiCF(a, z, p);
%p A321964     ser := series(cf, x, nops(a));
%p A321964     seq(coeff(ser, x, n), n = 0..nops(a)-1) end:
%p A321964 s := n -> [seq(n+k, k = 0..9)]:
%p A321964 Trow := n -> StieltjesGF(s(n), 1):
%p A321964 for n from 0 to 6 do lprint(Trow(n)) od;
%t A321964 nmax = 9;
%t A321964 JacobiCF[a_, b_, p_:2] := Module[{m, k},  m = 1; For[k = Length[a] , k >= 1, k--, m = 1 - b[[k]]*x - a[[k]]*x^p/m ]; 1/m];
%t A321964 JacobiGF[a_, b_, p_:2] := Module[{cf, l, ser}, cf = JacobiCF[a, b, p]; l = Min[Length[a], Length[b]]; ser = Series[cf, {x, 0, l}]; CoefficientList[ ser, x]];
%t A321964 JacobiSquare[a_, p_:2] := Module[{cf, ser}, cf = JacobiCF[a, a, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ser, x]];
%t A321964 StieltjesGF[a_, p_:2] := Module[{z, cf, ser}, z = Table[0, Length[a]]; cf = JacobiCF[a, z, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ ser, x]];
%t A321964 s[n_] := Table[n + k, {k, 0, nmax}];
%t A321964 Trow[0] = Table[Boole[k == 0], {k, 0, nmax}];
%t A321964 Trow[n_] := Trow[n] = StieltjesGF[s[n], 1] ;
%t A321964 T[n_, k_] := Trow[n][[k + 1]];
%t A321964 Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Jan 07 2019, translated from Maple *)
%o A321964 (Sage) # uses[StieltjesGF from A321960]
%o A321964 def Trow(n, dim): return StieltjesGF(lambda k: n+k, dim, p=1)
%o A321964 for n in (0..7): print(Trow(n, 9))
%Y A321964 Rows of array: A000007, A001147, A000698, A167872, A321963.
%Y A321964 Columns include: A014105. Row sums of triangle: A321961.
%Y A321964 Cf. A321960.
%K A321964 nonn,tabl
%O A321964 0,8
%A A321964 _Peter Luschny_, Dec 26 2018