This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321966 #40 Aug 25 2023 01:52:35 %S A321966 1,1,1,2,5,1,6,27,12,1,24,168,123,22,1,120,1200,1275,365,35,1,720, %T A321966 9720,13950,5655,855,51,1,5040,88200,163170,87465,18480,1722,70,1, %U A321966 40320,887040,2046240,1387680,383145,49476,3122,92,1 %N A321966 Triangle read by rows, coefficients of a family of orthogonal polynomials, T(n, k) for 0 <= k <= n. %C A321966 The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x + alpha(n))*p(n-1, x) - beta(n)*p(n-2, x) + gamma(n)*p(n-3, x). For the details see the Maple program. %C A321966 We conjecture that the polynomials have only negative and simple real roots. %C A321966 From _Giuliano Cabrele_, Sep 09 2021: (Start) %C A321966 Let He(n,x) define the probabilist's version of Hermite polynomials. %C A321966 Then the terms of the triangle appear to be the connection coefficients in %C A321966 x^n*He(n,x) = Sum_{k=0..n} T(n,k)*He(2k,x). %C A321966 These are generated by the explicit formula %C A321966 T(n,m) = 2^(n-m)*Sum_{j=0..floor(n/2)} C(n,2*j)*C(2*n-2*j,2*m)*Gamma(1/2 + n - m - j)/Gamma(1/2 - j). %C A321966 A formal proof that they correspond to the original definition is needed. (End) %H A321966 Peter Luschny, <a href="/A321966/a321966.jpg">Plot of the polynomials</a> %H A321966 Robert S. Maier, <a href="https://arxiv.org/abs/2308.10332">Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers</a>, arXiv:2308.10332 [math.CO], 2023. See p. 21. %F A321966 Let R be the inverse of the Riordan square [see A321620] of (1 - 2*x)^(-1/2) then T(n, k) = (-1)^(n-k)*R(n, k). %e A321966 p(0,x) = 1; %e A321966 p(1,x) = x + 1; %e A321966 p(2,x) = x^2 + 5*x + 2; %e A321966 p(3,x) = x^3 + 12*x^2 + 27*x + 6; %e A321966 p(4,x) = x^4 + 22*x^3 + 123*x^2 + 168*x + 24; %e A321966 p(5,x) = x^5 + 35*x^4 + 365*x^3 + 1275*x^2 + 1200*x + 120; %e A321966 p(6,x) = x^6 + 51*x^5 + 855*x^4 + 5655*x^3 + 13950*x^2 + 9720*x + 720; %p A321966 P := proc(n) option remember; local a, b, c; %p A321966 a := n -> 3*n-2; b := n -> (n-1)*(3*n-4); c := n -> (n-2)^2*(n-1); %p A321966 if n = 0 then return 1 fi; %p A321966 if n = 1 then return x + 1 fi; %p A321966 if n = 2 then return x^2 + 5*x + 2 fi; %p A321966 expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3)) end: %p A321966 seq(print(P(n)), n=0..6); # Computes the polynomials. %t A321966 a[n_] := 3n-2; b[n_] := (n-1)(3n-4); c[n_] := (n-2)^2 (n-1); %t A321966 P[n_] := P[n] = Switch[n, 0, 1, 1, x+1, 2, x^2 + 5x + 2, _, Expand[(x+a[n]) P[n-1] - b[n] P[n-2] + c[n] P[n-3]]]; %t A321966 Table[CoefficientList[P[n], x], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Jan 01 2019, from Maple *) %o A321966 (Sage) # uses[RiordanSquare from A321620] %o A321966 R = RiordanSquare((1 - 2*x)^(-1/2), 9, True).inverse() %o A321966 for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])]) %Y A321966 p(n, 1) = A321965(n); p(n, 0) = n! = A000142(n). %Y A321966 Cf. A321620. %K A321966 nonn,tabl %O A321966 0,4 %A A321966 _Peter Luschny_, Dec 20 2018