A321981 Row n gives the chromatic symmetric function of the n-girder, expanded in terms of elementary symmetric functions and ordered by Heinz number.
1, 2, 0, 6, 0, 0, 16, 0, 2, 0, 0, 40, 12, 2, 0, 0, 0, 0, 96, 16, 44, 6, 0, 0, 0, 0, 0, 0, 0, 224, 136, 66, 52, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 512, 384, 208, 96, 30, 178, 0, 18, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1152, 1024, 584, 522, 138, 588, 102
Offset: 1
Examples
Triangle begins: 1 2 0 6 0 0 16 0 2 0 0 40 12 2 0 0 0 0 96 16 44 6 0 0 0 0 0 0 0 224 136 66 52 2 4 0 2 0 0 0 0 0 0 0 For example, row 6 gives: X_G6 = 96e(6) + 6e(33) + 16e(42) + 44e(51).
Links
- Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111 (1995), 166-194.
- Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998), 267-286.
- Richard P. Stanley and John R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, Journal of Combinatorial Theory Series A 62-2 (1993), 261-279.
- Gus Wiseman, Enumeration of paths and cycles and e-coefficients of incomparability graphs, arXiv:0709.0430 [math.CO], 2007.
Comments