cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321990 Positive numbers for which the product of digits is equal to the power tower of digits (right-associative).

This page as a plain text file.
%I A321990 #70 Jul 29 2019 09:58:15
%S A321990 1,2,3,4,5,6,7,8,9,11,21,22,31,41,51,61,71,81,91,111,211,221,311,411,
%T A321990 511,611,711,811,911,1111,2111,2211,2412,3111,3313,4111,4212,5111,
%U A321990 6111,6213,7111,8111,8214,9111,11111,21111,22111,22212,24112,24121,28128,28144
%N A321990 Positive numbers for which the product of digits is equal to the power tower of digits (right-associative).
%C A321990 Positive numbers k such that A007954(k) = A256229(k).
%C A321990 All numbers of the form xx1x...x with x x's are terms, as are numbers of the form xxx1x...x with x^x x's, and so on.
%C A321990 If the first two digits of a number are x,y, respectively, and if (x^(y-1))/y is a positive integer, then the number of the form xy1(...), where (...) is a sequence of digits whose product is (x^(y-1))/y, is a term. - _Michal Gren_, Nov 29 2018
%H A321990 Michal Gren, <a href="/A321990/b321990.txt">Table of n, a(n) for n = 1..10000</a>
%e A321990 6213 is a term since 6^2^1^3 = 6*2*1*3 = 36.
%e A321990 8^4 = 4096. 8*4 = 32. So 841 followed by any sequence of digits whose product is 4096/32 = 128 is in the sequence. - _David A. Corneth_, Nov 28 2018
%t A321990 aQ[n_] := Module[{digits = IntegerDigits[n]}, If[MemberQ[digits, 0], False, Power@@digits == Times@@digits]]; Select[Range[1000], aQ] (* for small terms, or: *) aQ[n_] := Module[{d=IntegerDigits[n]}, If[MemberQ[d, 0], Return[False]]; p = Times@@d; If[MemberQ[d, 1], If[d[[1]]==1, Return[p==1]]; d = d[[1 ;; FirstPosition[d, 1][[1]]-1]]]; Do[p = Log[d[[i]], p], {i,1,Length[d]}]; p==1]; Select[Range[1000], aQ] (* _Amiram Eldar_, Nov 24 2018 *)
%o A321990 (PARI) a007954(n) = my(d=digits(n)); vecprod(d);
%o A321990 f256229(n, pd)= my(p=1); until(!n\=10, p=(n%10)^p; if (p>pd, return (-p))); p;
%o A321990 isok(k) = my(pd = a007954(k)); pd == f256229(k, pd); \\ _Michel Marcus_, Nov 25 2018
%Y A321990 Cf. A001055, A007954, A256229.
%K A321990 nonn,base
%O A321990 1,2
%A A321990 _Michal Gren_, Nov 23 2018