A322005 Least prime p such that n + p is a Fibonacci number (A000045).
2, 2, 3, 2, 17, 3, 2, 137, 5, 601, 3, 2, 43, 131, 7, 19, 5, 17, 3, 2, 967, 13, 67, 11, 31, 927372692193078999151, 29, 7, 61, 5, 59, 3, 2, 577, 199, 109, 19, 107, 17, 571, 193, 103, 13, 101, 11, 2539, 43, 97, 7, 14930303, 5, 27777890035237, 3, 2, 179, 89, 6709, 10889, 31, 46309, 29, 83, 6703, 547, 313, 79, 23, 46301, 919, 541, 19, 73, 17
Offset: 0
Keywords
Examples
a(0) = 2 is the smallest prime p such that p + 0 (= 2) is a Fibonacci number. a(1) = 2 is the smallest prime p such that p + 1 (= 3) is a Fibonacci number. a(2) = 3 is the smallest prime p such that p + 2 (= 5) is a Fibonacci number.
Links
- Robert Israel, Table of n, a(n) for n = 0..1958
Programs
-
Maple
f:= proc(n) local p,k,a,b,c; a:= -n:b:= 1-n: do c:= b; b:= a+b+n; a:= c; if isprime(b) then return b fi od end proc: map(f, [$0..80]); # Robert Israel, Dec 14 2018
-
Mathematica
primeQ[n_] := n>0 && PrimeQ[n]; a[n_] := Module[{i=2}, While[!primeQ[Fibonacci[i] - n], i++]; Fibonacci[i] - n]; Array[a, 27, 0] (* Amiram Eldar, Dec 12 2018 *)
-
PARI
a(n)=for(i=1,oo,ispseudoprime(fibonacci(i)-n)&&return(fibonacci(i)-n))
Comments