This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322014 #8 Nov 28 2018 19:02:03 %S A322014 1,2,4,5,8,9,10,11,16,17,18,20,21,22,23,25,31,32,34,36,39,40,41,42,44, %T A322014 45,46,47,49,50,55,57,59,62,64,67,68,72,73,78,80,81,82,83,84,85,87,88, %U A322014 90,91,92,94,97,98,99,100,103,105,109,110,111,114,115,118 %N A322014 Heinz numbers of integer partitions with an even number of even parts. %C A322014 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). %H A322014 Alois P. Heinz, <a href="/A322014/b322014.txt">Table of n, a(n) for n = 1..20000</a> %p A322014 a:= proc(n) option remember; local k; for k from 1+`if`(n=1, %p A322014 0, a(n-1)) while add(`if`(numtheory[pi](i[1])::odd, %p A322014 0, i[2]), i=ifactors(k)[2])::odd do od; k %p A322014 end: %p A322014 seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 24 2018 %t A322014 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A322014 Select[Range[200],EvenQ[Count[primeMS[#],_?EvenQ]]&] %Y A322014 Cf. A000701, A046682, A056239, A058695, A058696, A108949, A296150, A321753. %K A322014 nonn %O A322014 1,2 %A A322014 _Gus Wiseman_, Nov 24 2018