cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322014 Heinz numbers of integer partitions with an even number of even parts.

This page as a plain text file.
%I A322014 #8 Nov 28 2018 19:02:03
%S A322014 1,2,4,5,8,9,10,11,16,17,18,20,21,22,23,25,31,32,34,36,39,40,41,42,44,
%T A322014 45,46,47,49,50,55,57,59,62,64,67,68,72,73,78,80,81,82,83,84,85,87,88,
%U A322014 90,91,92,94,97,98,99,100,103,105,109,110,111,114,115,118
%N A322014 Heinz numbers of integer partitions with an even number of even parts.
%C A322014 The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
%H A322014 Alois P. Heinz, <a href="/A322014/b322014.txt">Table of n, a(n) for n = 1..20000</a>
%p A322014 a:= proc(n) option remember; local k; for k from 1+`if`(n=1,
%p A322014       0, a(n-1)) while add(`if`(numtheory[pi](i[1])::odd,
%p A322014       0, i[2]), i=ifactors(k)[2])::odd do od; k
%p A322014     end:
%p A322014 seq(a(n), n=1..100);  # _Alois P. Heinz_, Nov 24 2018
%t A322014 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A322014 Select[Range[200],EvenQ[Count[primeMS[#],_?EvenQ]]&]
%Y A322014 Cf. A000701, A046682, A056239, A058695, A058696, A108949, A296150, A321753.
%K A322014 nonn
%O A322014 1,2
%A A322014 _Gus Wiseman_, Nov 24 2018