cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322028 Number of distinct orders of primeness among the prime factors of n.

This page as a plain text file.
%I A322028 #10 Nov 28 2018 18:58:10
%S A322028 0,1,1,1,1,2,1,1,1,2,1,2,1,1,2,1,1,2,1,2,2,2,1,2,1,1,1,1,1,3,1,1,2,2,
%T A322028 2,2,1,1,2,2,1,2,1,2,2,1,1,2,1,2,1,1,1,2,2,1,2,1,1,3,1,2,2,1,2,3,1,2,
%U A322028 2,2,1,2,1,1,2,1,2,2,1,2,1,2,1,2,2,1,2
%N A322028 Number of distinct orders of primeness among the prime factors of n.
%C A322028 The order of primeness (A078442) of a prime number p is the number of times one must apply A000720 to obtain a nonprime number.
%H A322028 Alois P. Heinz, <a href="/A322028/b322028.txt">Table of n, a(n) for n = 1..65536</a>
%H A322028 N. Fernandez, <a href="http://www.borve.org/primeness/FOP.html">An order of primeness, F(p)</a>
%H A322028 N. Fernandez, <a href="/A006450/a006450.html">An order of primeness</a> [cached copy, included at A006450 with permission of the author]
%e A322028 a(105) = 3 because the prime factors of 105 = 3*5*7 have 3 different orders of primeness, namely 2, 3, and 1 respectively.
%p A322028 with(numtheory):
%p A322028 p:= proc(n) option remember;
%p A322028       `if`(isprime(n), 1+p(pi(n)), 0)
%p A322028     end:
%p A322028 a:= n-> nops(map(p, factorset(n))):
%p A322028 seq(a(n), n=1..120);  # _Alois P. Heinz_, Nov 24 2018
%t A322028 Table[If[n==1,0,Length[Union[Length[NestWhileList[PrimePi,PrimePi[#],PrimeQ]]&/@FactorInteger[n][[All,1]]]]],{n,100}]
%Y A322028 Cf. A000720, A006450, A007097, A007821, A049076, A076610, A078442, A109082, A114537, A184155, A276625, A279065, A322027, A322030.
%K A322028 nonn
%O A322028 1,6
%A A322028 _Gus Wiseman_, Nov 24 2018