cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322036 a(n) = A322035(n) - A322034(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 5, 2, 10, 1, 12, 3, 3, 1, 16, 5, 18, 1, 13, 5, 22, 1, 19, 6, 14, 3, 28, 3, 30, 1, 7, 8, 27, 5, 36, 9, 25, 1, 40, 13, 42, 5, 8, 11, 46, 1, 41, 19, 11, 3, 52, 7, 43, 3, 37, 14, 58, 3, 60, 15, 34, 1, 51, 7, 66, 4, 15, 27, 70
Offset: 1

Views

Author

Keywords

Comments

Let s be the fraction defined in A322034 and A322035. Then for n >= 2, 1-s is a(n)/A322035(n).
Note that a(n) >= 1, see A322034.

Examples

			Let s be the fraction defined in A322034 and A322035. The fractions 1-s for n >= 2 are 1/2, 2/3, 1/4, 4/5, 1/3, 6/7, 1/8, 5/9, 2/5, 10/11, 1/6, 12/13, 3/7, 3/5, 1/16, 16/17, 5/18, 18/19, 1/5, 13/21, 5/11, 22/23, 1/12, 19/25, 6/13, 14/27, ...
		

Crossrefs

Programs

  • Maple
    # This generates the terms starting at n=2:
    P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746
    f0:=[]; f1:=[]; f2:=[];
    for n from 2 to 120 do
    a:=0; b:=1; t1:=[P(n)];
    for i from 1 to nops(t1) do b:=b/t1[i]; a:=a+b; od;
    f0:=[op(f0),a]; f1:=[op(f1), numer(a)]; f2:=[op(f2),denom(a)]; od:
    f0;    # s
    f1;    # A322034
    f2;    # A322035
    f2-f1; # A322036
  • Mathematica
    f[x_] := Flatten[ConstantArray[#1, #2] & @@@ FactorInteger[x]]; {1}~Join~Table[Denominator[#] - Numerator[#] &@ Total@ Table[1/Times @@ #[[;; i]], {i, Length[#]}] &@ f[n], {n, 2, 120}] (* Michael De Vlieger, Jun 20 2025 *)