This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322044 #40 Oct 17 2022 01:45:31 %S A322044 1,1,2,1,3,6,1,3,14,30,1,2,23,94,192,1,0,35,180,744,1560,1,-3,55,255, %T A322044 1744,7308,15120,1,-7,91,245,3304,19922,82284,171360,1,-12,154,0,5929, %U A322044 40572,255996,1068240,2217600,1,-18,258,-756,11361,64638,602972,3746376,15533568,32296320 %N A322044 Triangle read by rows: numerators of coefficients (highest degree first) of polynomials interpolating Fibonacci numbers. %C A322044 Row n has denominator n!. %D A322044 Brian Hopkins and Aram Tangboonduangjit, Fibonacci-producing rational polynomials, Fib. Q., 56:4 (2018), 303-312. %H A322044 Alois P. Heinz, <a href="/A322044/b322044.txt">Rows n = 0..140, flattened</a> (first 17 rows from Brian Hopkins) %F A322044 The degree n polynomial is defined to be the interpolating polynomial of (0, F(n+2)), (1, F(n+3)), ..., (n,F(2n+2)) where F(n) is the n-th Fibonacci number. Theorem 2.1 of the paper proves the alternative form Sum_{i=0..n} F(i+n+2) * binomial(x,i) * binomial(n-x,n-i). - _Brian Hopkins_, Feb 24 2019 %e A322044 Triangle begins: %e A322044 1; %e A322044 1, 2; %e A322044 1, 3, 6; %e A322044 1, 3, 14, 30; %e A322044 1, 2, 23, 94, 192; %e A322044 1, 0, 35, 180, 744, 1560; %e A322044 1, -3, 55, 255, 1744, 7308, 15120; %e A322044 ... %p A322044 F:= proc(n) option remember; (<<0|1>, <1|1>>^n)[1, 2] end: %p A322044 T:= n-> (p-> seq(coeff(p, x, n-j), j=0..n))(n!*expand(add( %p A322044 F(i+n+2)*binomial(x, i)*binomial(n-x, n-i), i=0..n))): %p A322044 seq(T(n), n=0..10); # _Alois P. Heinz_, Feb 24 2019 %t A322044 F[n_] := F[n] = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]; %t A322044 T[n_] := Function[p, Table[Coefficient[p, x, n - j], {j, 0, n}]][n! * FunctionExpand[Sum[F[i + n + 2] Binomial[x, i] Binomial[n - x, n - i], {i, 0, n}]]]; %t A322044 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, May 29 2020, after _Alois P. Heinz_ *) %Y A322044 Main diagonal gives A078700(n+1). %Y A322044 Second column is negation of A167544. %Y A322044 Cf. A000045, A000142. %K A322044 tabl,sign %O A322044 0,3 %A A322044 _N. J. A. Sloane_, Dec 07 2018 %E A322044 Edited by _Brian Hopkins_, Feb 24 2019