A322049 When A322050 is displayed as a triangle the rows converge to this sequence.
1, 7, 6, 30, 8, 48, 17, 81, 9, 50, 29, 145, 27, 145, 37, 189, 8, 45, 34, 166, 45, 252, 73, 342, 37, 179, 89, 425, 74, 374, 86, 412, 8, 49, 33, 165, 46, 270, 91, 436, 50, 277, 149, 734, 122, 630, 144, 723, 38, 179, 101, 488, 130, 753, 209, 990, 90, 450, 210, 991
Offset: 0
Links
- Hugo Pfoertner, Table of n, a(n) for n = 0..5461
- Hugo Pfoertner, Logarithmic plot of 5462 terms, use zoom to see details.
Formula
From M. F. Hasler, Dec 18 2018: (Start)
Experimental data suggests the following properties:
Sporadic values occurring only a finite number of times, with no regular pattern:
a(n) | 1 | 6 | 7 | 9 | 37 | 48 | 50 | 53 | ...
-----+---+---+---+---+--------+----+-------+----+-----
n | 0 | 2 | 1 | 8 | 14, 24 | 5 | 9, 40 | 80 | ...
Values occurring in regular patterns:
a(n) = 8 iff n = 2^k, k = 2 or k >= 4; a(n) > 8 for all other n > 2.
a(n) = 33 iff n = 2^(2k+1) + 2, k >= 2; a(n) > 33 for all other n > 12 unless n = 2^k <=> a(n) = 8.
a(n) = 34 iff n = 4^k + 2, k >= 2.
a(n) = 38 iff n = 3*2^k, k = 4, 5, 6, 8, 10, ...
a(n) = 27*2^m if n = 3*2^k with k = 2 (m = 0) or k = 7, 9, ... (m = 1, 2, ...)
a(n) = 45 iff n = 20 or n = 4^k + 1, k >= 2.
a(n) = 46 iff n = 2^(2k+1) + 4, k >= 2.
a(n) = 49 iff n = 2^(2k+1) + 1, k >= 2, or n = 4^k + 4, k >= 3.
a(n) > 50 for all n > 10 not mentioned above. (End)
Comments