This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322051 #28 Dec 29 2018 03:43:37 %S A322051 1,1,2,4,6,11,22,43,86,171,342,683,1366,2731,5462 %N A322051 a(n) is the number of initial terms in the row of length 2^n of A322050 that agree with the limiting sequence A322049. %C A322051 Seems to be identical to A005578 with the exception of a(3) = 4. - _Omar E. Pol_, Dec 17 2018 %F A322051 Conjecture: For n >= 5, a(n) = 2*a(n-1)-1 if n is odd, 2*a(n-1) if n is even. %F A322051 Conjectures from _Colin Barker_, Dec 29 2018: (Start) %F A322051 G.f.: (1 - x - x^2 + x^3 - 2*x^4 - x^5 + 2*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)). %F A322051 a(n) = (2^n + 2) / 3 for n even and n>3. %F A322051 a(n) = (2^n + 1) / 3 for n odd and n>3. %F A322051 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>6. %F A322051 (End) %e A322051 n i* a(n) first non-matching pair (i* = Index of start in A319018) %e A322051 0 3 1 5 1 %e A322051 1 5 1 7 5 %e A322051 2 9 2 6 3 %e A322051 3 17 4 8 5 %e A322051 4 33 6 17 15 %e A322051 5 65 11 145 141 %e A322051 6 129 22 73 69 %e A322051 7 257 43 734 726 %e A322051 8 513 86 349 341 %e A322051 9 1025 171 3579 3563 %e A322051 10 2049 342 1696 1680 %e A322051 11 4097 683 17810 17778 %e A322051 12 8193 1366 8394 8362 %e A322051 13 16385 2731 88553 88489 %e A322051 14 32769 5462 41665 41601 %e A322051 ... %Y A322051 Cf. A319018, A319019, A322049, A322050. %Y A322051 See also A005578. %K A322051 nonn %O A322051 0,3 %A A322051 _Hugo Pfoertner_, Dec 16 2018 %E A322051 Edited by _M. F. Hasler_, Dec 18 2018