cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322052 Number of decimal strings of length n that contain a specific string xy where x and y are distinct digits.

Original entry on oeis.org

0, 1, 20, 299, 3970, 49401, 590040, 6850999, 77919950, 872348501, 9645565060, 105583302099, 1146187455930, 12356291257201, 132416725116080, 1411810959903599, 14985692873919910, 158445117779295501, 1669465484919035100, 17536209731411055499, 183692631829191519890, 1919390108560504143401
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2018

Keywords

Comments

See A004189 for the number that do not contain the specified string.

Examples

			Suppose the desired string is 03. At length 2 that is the only possibility. At length 3 there are 20 strings that contain it: 03d and d03, where d is any digit.
		

Crossrefs

Partial sums of A322628.

Programs

  • Maple
    f:= gfun:-rectoproc({10*a(n) - 101*a(n + 1) + 20*a(n + 2) - a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1},a(n),remember):
    map(f, [$1..40]); # Robert Israel, Mar 27 2020

Formula

G.f.: x^2/((1-10*x)*(1-10*x+x^2)).

A322054 Number of decimal strings of length n that do not contain a specific string xx (where x is a single digit).

Original entry on oeis.org

10, 99, 981, 9720, 96309, 954261, 9455130, 93684519, 928256841, 9197472240, 91131561729, 902961305721, 8946835807050, 88648174014939, 878355088397901, 8703029361715560, 86232460051021149, 854419404714630381, 8465866782890863770
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2018

Keywords

Comments

See A322053 for the number that do contain the specified string.

Examples

			Suppose the string is 00. At length 2 there are 99 strings that do not contain it. At length 3 there are 19 strings that do not contain it, 000, 00x, and x00, where x is any nonzero digit. So a(3) = 1000-19 = 981.
		

Crossrefs

Suggested by A322628.

Programs

  • Mathematica
    T[n_, k_] := LinearRecurrence[{n - 1, n - 1}, {n, n^2 - 1}, k];
    T[10, {1, 19}] (* Robert P. P. McKone, Dec 31 2020 *)

Formula

G.f.: x*(10+9*x)/(1-9*x-9*x^2).
a(n) = 9*a(n-1) + 9*a(n-2) for n >= 3.
Showing 1-2 of 2 results.