A322055 Number of ON cells after n generations of two-dimensional automaton based on knight moves (see Comments for definition; here a cell is turned ON if 1 or 2 neighbors are ON).
1, 9, 41, 73, 145, 185, 321, 385, 577, 649, 881, 993, 1297, 1401, 1729, 1889, 2305, 2441, 2865, 3073, 3601, 3769, 4289, 4545, 5185, 5385, 6001, 6305, 7057, 7289, 8001, 8353, 9217, 9481, 10289, 10689, 11665, 11961, 12865, 13313, 14401, 14729, 15729, 16225
Offset: 0
Keywords
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..1000
- Rémy Sigrist, Illustration of the structure at stage 255
- N. J. A. Sloane, Illustration of a(0) to a(5).
Formula
Conjectures from Colin Barker, Dec 22 2018: (Start)
G.f.: (1 + 8*x + 32*x^2 + 32*x^3 + 70*x^4 + 24*x^5 + 72*x^6 + 49*x^8 - 8*x^10 + 16*x^11 - 8*x^12) / ((1 - x)^3*(1 + x)^2*(1 + x^2)^2).
a(n) = a(n-1) + 2*a(n-4) - 2*a(n-5) - a(n-8) + a(n-9) for n>8.
(End)
Extensions
More terms from Rémy Sigrist, Dec 22 2018
Comments