A322063 Number of ways to choose a stable partition of an antichain of sets spanning n vertices.
1, 1, 3, 25, 773, 160105
Offset: 0
Examples
The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions. {1}{2}{3} {1,2,3} {1}{2,3} {1,3}{2} {1,2}{3} -------- -------- -------- -------- -------- {{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2,3}} {{1},{2,3}} {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} . {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3} -------- -------- -------- -------- {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Sum[Length[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ]],{stn,sps[Range[n]]}],{n,5}]
Comments