cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322065 Number of ways to choose a stable partition of a connected antichain of sets spanning n vertices.

Original entry on oeis.org

1, 1, 1, 11, 525, 146513
Offset: 0

Views

Author

Gus Wiseman, Nov 25 2018

Keywords

Comments

A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.

Examples

			The a(3) = 11 stable partitions. The connected antichain is on top, and below is a list of all its stable partitions.
{1,2,3}        {1,3}{2,3}     {1,2}{2,3}     {1,2}{1,3}     {1,2}{1,3}{2,3}
--------       --------       --------       --------       --------
{{1},{2,3}}    {{1,2},{3}}    {{1,3},{2}}    {{1},{2,3}}    {{1},{2},{3}}
{{1,2},{3}}    {{1},{2},{3}}  {{1},{2},{3}}  {{1},{2},{3}}
{{1,3},{2}}
{{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Sum[Length[Select[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]