A322065 Number of ways to choose a stable partition of a connected antichain of sets spanning n vertices.
1, 1, 1, 11, 525, 146513
Offset: 0
Examples
The a(3) = 11 stable partitions. The connected antichain is on top, and below is a list of all its stable partitions. {1,2,3} {1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3} -------- -------- -------- -------- -------- {{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}} {{1,2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}} {{1,3},{2}} {{1},{2},{3}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Sum[Length[Select[stableSets[Complement[Subsets[Range[n]],Union@@Subsets/@stn],SubsetQ],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
Comments