A322076 Number of set multipartitions (multisets of sets) with no singletons, of a multiset whose multiplicities are the prime indices of n.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 3, 1, 0, 2, 0, 0, 1, 0, 11, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 13, 1, 1, 0, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 0, 1, 41, 0, 0, 0, 0, 0, 1, 0, 20, 0, 0, 2, 0, 0, 0, 0, 6, 16, 0, 0, 1, 0
Offset: 1
Keywords
Examples
The a(90) = 7 set multipartitions of {1,1,1,2,2,3,3,4} with no singletons: {{1,2},{1,2},{1,3},{3,4}} {{1,2},{1,3},{1,3},{2,4}} {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{1,2,3,4}} {{1,2},{1,2,3},{1,3,4}} {{1,3},{1,2,3},{1,2,4}} {{1,4},{1,2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; sqnopfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqnopfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimeQ[#]&&SquareFreeQ[#]&]}]]; Table[Length[sqnopfacs[Times@@Prime/@nrmptn[n]]],{n,30}]
Comments