A322077 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition whose multiplicities are the prime indices of n in weakly decreasing order.
1, 1, 2, 2, 3, 4, 5, 5, 8, 6, 7, 9, 11, 10, 12, 13, 15, 18, 22, 15, 19, 14, 30, 24, 22, 21, 40, 23, 42, 29, 56, 36, 27, 29, 34, 47, 77, 41, 39, 40
Offset: 1
Examples
The list of a(1) = 1 through a(18) = 18 coarser partitions: () (1) (2) (3) (3) (4) (4) (6) (6) (5) (5) (11) (21) (21) (22) (22) (33) (33) (32) (32) (111) (31) (31) (42) (42) (41) (41) (211) (211) (51) (51) (221) (221) (1111) (321) (222) (311) (311) (321) (2111) (2111) (411) (11111) (2211) . (7) (6) (6) (7) (10) (7) (9) (43) (33) (33) (43) (55) (43) (54) (52) (42) (42) (52) (64) (52) (63) (61) (51) (51) (61) (73) (61) (72) (322) (222) (222) (322) (82) (322) (81) (331) (321) (321) (331) (91) (331) (333) (421) (411) (411) (421) (433) (421) (432) (511) (2211) (2211) (511) (442) (511) (441) (3211) (3111) (3111) (2221) (532) (2221) (522) (21111) (21111) (3211) (541) (3211) (531) (111111) (4111) (631) (4111) (621) (22111) (721) (22111) (711) (4321) (31111) (3222) (211111) (3321) (1111111) (4221) (4311) (5211) (32211)
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Length[Union[Sort/@Apply[Plus,mps[nrmptn[n]],{2}]]],{n,20}]
Comments