This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322087 #25 Dec 04 2022 12:32:24 %S A322087 4,8,6,8,12,2,1,9,9,10,1,6,4,10,6,11,11,9,5,5,0,5,2,5,8,0,8,7,3,5,3, %T A322087 12,0,3,10,3,5,8,1,12,11,8,7,0,3,1,4,9,9,9,1,10,6,12,2,7,3,5,1,6,12,1, %U A322087 1,12,10,5,6,11,7,8,12,10,1,3,5,5,5,7,11,1,5 %N A322087 Digits of one of the two 13-adic integers sqrt(3). %C A322087 This square root of 3 in the 13-adic field ends with digit 4. The other, A322088, ends with digit 9. %H A322087 Seiichi Manyama, <a href="/A322087/b322087.txt">Table of n, a(n) for n = 0..10000</a> %H A322087 Peter Bala, <a href="/A051277/a051277.pdf">Using Chebyshev polynomials to find the p-adic square roots of 2 and 3</a>, Dec 2022. %H A322087 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322087 a(n) = (A322085(n+1) - A322085(n))/13^n. %F A322087 For n > 0, a(n) = 12 - A322088(n). %F A322087 Equals A286838*A322091 = A286839*A322092. %F A322087 This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {2*T(13^n,2)}, where T(n,x) denotes the n-th Chebyshev polynomial. - _Peter Bala_, Dec 04 2022 %e A322087 ...BC1853A30C35378085250559BB6A461A9912C8684. %o A322087 (PARI) a(n) = truncate(sqrt(3+O(13^(n+1))))\13^n %Y A322087 Cf. A322085. %Y A322087 Digits of p-adic integers: %Y A322087 A321074, A321075 (11-adic, sqrt(3)); %Y A322087 this sequence, A322088 (13-adic, sqrt(3)); %Y A322087 A286838, A286839 (13-adic, sqrt(-1)); %Y A322087 A322091, A322092 (13-adic, sqrt(-3)). %K A322087 nonn,base %O A322087 0,1 %A A322087 _Jianing Song_, Nov 26 2018