This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322088 #17 Dec 04 2022 12:37:21 %S A322088 9,4,6,4,0,10,11,3,3,2,11,6,8,2,6,1,1,3,7,7,12,7,10,7,4,12,4,5,9,7,9, %T A322088 0,12,9,2,9,7,4,11,0,1,4,5,12,9,11,8,3,3,3,11,2,6,0,10,5,9,7,11,6,0, %U A322088 11,11,0,2,7,6,1,5,4,0,2,11,9,7,7,7,5,1,11,7 %N A322088 Digits of one of the two 13-adic integers sqrt(3). %C A322088 This square root of 3 in the 13-adic field ends with digit 9. The other, A322087, ends with digit 4. %H A322088 Seiichi Manyama, <a href="/A322088/b322088.txt">Table of n, a(n) for n = 0..10000</a> %H A322088 Peter Bala, <a href="/A051277/a051277.pdf">Using Chebyshev polynomials to find the p-adic square roots of 2 and 3</a>, Dec 2022. %H A322088 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322088 a(n) = (A322086(n+1) - A322086(n))/13^n. %F A322088 For n > 0, a(n) = 12 - A322087(n). %F A322088 Equals A286838*A322092 = A286839*A322091. %F A322088 This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {2*T(13^n,9/2)}, where T(n,x) denotes the n-th Chebyshev polynomial. - _Peter Bala_, Dec 04 2022 %e A322088 ...10B47929C097954C47A7C773116286B233BA04649. %o A322088 (PARI) a(n) = truncate(-sqrt(3+O(13^(n+1))))\13^n %Y A322088 Cf. A286838, A286839, A322086, A322087, A322091, A322092. %K A322088 nonn,base,easy %O A322088 0,1 %A A322088 _Jianing Song_, Nov 26 2018