This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322091 #18 Jan 08 2025 11:13:44 %S A322091 6,3,12,6,10,7,4,4,9,8,9,2,8,5,12,3,5,4,0,6,5,1,2,6,5,9,4,9,1,1,4,6, %T A322091 11,3,1,12,5,2,2,6,3,11,11,8,4,5,10,10,7,9,5,7,7,7,8,0,1,0,7,7,0,9,12, %U A322091 10,8,1,6,1,2,10,2,9,7,2,1,10,11,4,3,5,6 %N A322091 Digits of one of the two 13-adic integers sqrt(-3). %C A322091 This square root of -3 in the 13-adic field ends with digit 6. The other, A322092, ends with digit 7. %H A322091 Seiichi Manyama, <a href="/A322091/b322091.txt">Table of n, a(n) for n = 0..10000</a> %H A322091 Peter Bala, <a href="/A210850/a210850.pdf">Using Lucas polynomials to find the p-adic square roots of -1, -2 and -3</a>, Dec 2022. %H A322091 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322091 a(n) = (A322089(n+1) - A322089(n))/13^n. %F A322091 For n > 0, a(n) = 12 - A322092(n). %F A322091 Equals A286838*A322088 = A286839*A322087. %F A322091 This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {L(13^n,6)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - _Peter Bala_, Dec 05 2022 %e A322091 ...36225C13B64119495621560453C582989447A6C36. %o A322091 (PARI) a(n) = truncate(sqrt(-3+O(13^(n+1))))\13^n %Y A322091 Cf. A114525, A286838, A286839, A322087, A322088, A322089, A322092. %K A322091 nonn,base,easy %O A322091 0,1 %A A322091 _Jianing Song_, Nov 26 2018