This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322092 #21 Jan 08 2025 11:13:56 %S A322092 7,9,0,6,2,5,8,8,3,4,3,10,4,7,0,9,7,8,12,6,7,11,10,6,7,3,8,3,11,11,8, %T A322092 6,1,9,11,0,7,10,10,6,9,1,1,4,8,7,2,2,5,3,7,5,5,5,4,12,11,12,5,5,12,3, %U A322092 0,2,4,11,6,11,10,2,10,3,5,10,11,2,1,8,9,7,6 %N A322092 Digits of one of the two 13-adic integers sqrt(-3). %C A322092 This square root of -3 in the 13-adic field ends with digit 7. The other, A322091, ends with digit 6. %H A322092 Seiichi Manyama, <a href="/A322092/b322092.txt">Table of n, a(n) for n = 0..10000</a> %H A322092 Peter Bala, <a href="/A210850/a210850.pdf">Using Lucas polynomials to find the p-adic square roots of -1, -2 and -3</a>, Dec 2022. %H A322092 Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a> %F A322092 a(n) = (A322090(n+1) - A322090(n))/13^n. %F A322092 For n > 0, a(n) = 12 - A322091(n). %F A322092 Equals A286838*A322087 = A286839*A322088. %F A322092 This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {L(13^n,7)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - _Peter Bala_, Dec 05 2022 %e A322092 ...96AA70B9168BB38376AB76C879074A34388526097. %o A322092 (PARI) a(n) = truncate(-sqrt(-3+O(13^(n+1))))\13^n %Y A322092 Cf. A114525, A286838, A286839, A322087, A322088, A322090, A322091. %K A322092 nonn,base,easy %O A322092 0,1 %A A322092 _Jianing Song_, Nov 26 2018