This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322103 #12 Jul 26 2022 10:09:38 %S A322103 1,1,3,1,4,3,1,6,5,6,1,10,11,11,3,1,18,29,27,7,9,1,34,83,83,27,20,3,1, %T A322103 66,245,291,127,66,9,10,1,130,731,1091,627,290,51,26,6,1,258,2189, %U A322103 4227,3127,1494,345,112,18,9,1,514,6563,16643,15627,8330,2403,668,102,28,3 %N A322103 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} sigma_k(d). %H A322103 Seiichi Manyama, <a href="/A322103/b322103.txt">Antidiagonals n = 1..140, flattened</a> %F A322103 G.f. of column k: Sum_{j>=1} sigma_k(j)*x^j/(1 - x^j). %F A322103 A(n,k) = Sum_{d|n} d^k*tau(n/d). %e A322103 Square array begins: %e A322103 1, 1, 1, 1, 1, 1, ... %e A322103 3, 4, 6, 10, 18, 34, ... %e A322103 3, 5, 11, 29, 83, 245, ... %e A322103 6, 11, 27, 83, 291, 1091, ... %e A322103 3, 7, 27, 127, 627, 3127, ... %e A322103 9, 20, 66, 290, 1494, 8330, ... %t A322103 Table[Function[k, Sum[DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten %t A322103 Table[Function[k, SeriesCoefficient[Sum[DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten %o A322103 (PARI) T(n,k)={sumdiv(n, d, d^k*numdiv(n/d))} %o A322103 for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ _Andrew Howroyd_, Nov 26 2018 %Y A322103 Columns k=0..3 give A007425, A007429, A007433, A321140. %Y A322103 Cf. A109974, A321141 (diagonal), A356045. %K A322103 nonn,tabl %O A322103 1,3 %A A322103 _Ilya Gutkovskiy_, Nov 26 2018