cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322105 Numbers that set a record for occurrences as longest side of a triangle with integer sides and positive integer area.

This page as a plain text file.
%I A322105 #31 Nov 05 2023 21:27:52
%S A322105 1,5,13,15,25,30,52,65,75,100,120,145,195,300,325,390,520,585,600,650,
%T A322105 780,975,1105,1300,1560,1700,1950,2550,2600,3315,3900,4420,5100,5525,
%U A322105 6630,7800,8840,10200,11050,13260,16575,22100,26520,33150,44200,53040,66300,96135
%N A322105 Numbers that set a record for occurrences as longest side of a triangle with integer sides and positive integer area.
%C A322105 Congruent triangles are identified, that is to say mirror images are not distinguished.
%C A322105 The corresponding numbers of occurrences are 0, 1, 2, 3, 4, 7, 10, ...
%C A322105 A054875(k) gives the number of occurrences for any integer k.
%H A322105 Ray Chandler, <a href="/A322105/b322105.txt">Table of n, a(n) for n = 1..79</a> (terms < 6*10^6; first 67 terms from Giovanni Resta)
%H A322105 Ray Chandler, <a href="/A322105/a322105_1.txt">First 79 terms with corresponding occurrences</a> (first 67 terms from Giovanni Resta)
%e A322105 13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}.
%e A322105 The side lengths, a(n), and their corresponding record numbers of occurrences, A054875(a(n)), are:
%e A322105 n       a(n)     prime factorization of a(n)  occurrences
%e A322105 1          1     -                               0
%e A322105 2          5     5                               1
%e A322105 3         13     13                              2
%e A322105 4         15     3 * 5                           3
%e A322105 5         25     5^2                             4
%e A322105 6         30     2 * 3 * 5                       7
%e A322105 7         52     2^2 * 13                       10
%e A322105 8         65     5 * 13                         11
%e A322105 9         75     3 * 5^2                        13
%e A322105 10       100     2^2 * 5^2                      15
%e A322105 11       120     2^3 * 3 * 5                    22
%e A322105 12       145     5 * 29                         23
%e A322105 13       195     3 * 5 * 13                     35
%e A322105 14       300     2^2 * 3 * 5^2                  41
%e A322105 15       325     5^2 * 13                       51
%e A322105 16       390     2 * 3 * 5 * 13                 57
%e A322105 17       520     2^3 * 5 * 13                   63
%e A322105 18       585     3^2 * 5 * 13                   64
%e A322105 19       600     2^3 * 3 * 5^2                  72
%e A322105 20       650     2 * 5^2 * 13                   82
%e A322105 21       780     2^2 * 3 * 5 * 13               94
%e A322105 22       975     3 * 5^2 * 13                  135
%e A322105 23      1105     5 * 13 * 17                   143
%e A322105 24      1300     2^2 * 5^2 * 13                158
%e A322105 25      1560     2^3 * 3 * 5 * 13              171
%e A322105 26      1700     2^2 * 5^2 * 17                182
%e A322105 27      1950     2 * 3 * 5^2 * 13              210
%e A322105 28      2550     2 * 3 * 5^2 * 17              216
%e A322105 29      2600     2^3 * 5^2 * 13                251
%e A322105 30      3315     3 * 5 * 13 * 17               333
%e A322105 31      3900     2^2 * 3 * 5^2 * 13            367
%e A322105 32      4420     2^2 * 5 * 13 * 17             373
%e A322105 33      5100     2^2 * 3 * 5^2 * 17            406
%e A322105 34      5525     5^2 * 13 * 17                 496
%e A322105 35      6630     2 * 3 * 5 * 13 * 17           525
%e A322105 36      7800     2^3 * 3 * 5^2 * 13            605
%e A322105 37      8840     2^3 * 5 * 13 * 17             610
%e A322105 38     10200     2^3 * 3 * 5^2 * 17            660
%e A322105 39     11050     2 * 5^2 * 13 * 17             735
%e A322105 40     13260     2^2 * 3 * 5 * 13 * 17         897
%e A322105 41     16575     3 * 5^2 * 13 * 17            1132
%e A322105 42     22100     2^2 * 5^2 * 13 * 17          1276
%t A322105 okQ[x_, y_, z_] := If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1],{n,1,100}]; s
%Y A322105 Cf. A054875, A096467, A120130, A306626.
%K A322105 nonn
%O A322105 1,2
%A A322105 _Amiram Eldar_ and _Peter Munn_, Nov 26 2018
%E A322105 a(43)-a(48) from _Giovanni Resta_, Nov 03 2019