This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322105 #31 Nov 05 2023 21:27:52 %S A322105 1,5,13,15,25,30,52,65,75,100,120,145,195,300,325,390,520,585,600,650, %T A322105 780,975,1105,1300,1560,1700,1950,2550,2600,3315,3900,4420,5100,5525, %U A322105 6630,7800,8840,10200,11050,13260,16575,22100,26520,33150,44200,53040,66300,96135 %N A322105 Numbers that set a record for occurrences as longest side of a triangle with integer sides and positive integer area. %C A322105 Congruent triangles are identified, that is to say mirror images are not distinguished. %C A322105 The corresponding numbers of occurrences are 0, 1, 2, 3, 4, 7, 10, ... %C A322105 A054875(k) gives the number of occurrences for any integer k. %H A322105 Ray Chandler, <a href="/A322105/b322105.txt">Table of n, a(n) for n = 1..79</a> (terms < 6*10^6; first 67 terms from Giovanni Resta) %H A322105 Ray Chandler, <a href="/A322105/a322105_1.txt">First 79 terms with corresponding occurrences</a> (first 67 terms from Giovanni Resta) %e A322105 13 is in the sequence since it occurs in a record number of 2 triangles of side lengths {5, 12, 13} and {10, 13, 13}. %e A322105 The side lengths, a(n), and their corresponding record numbers of occurrences, A054875(a(n)), are: %e A322105 n a(n) prime factorization of a(n) occurrences %e A322105 1 1 - 0 %e A322105 2 5 5 1 %e A322105 3 13 13 2 %e A322105 4 15 3 * 5 3 %e A322105 5 25 5^2 4 %e A322105 6 30 2 * 3 * 5 7 %e A322105 7 52 2^2 * 13 10 %e A322105 8 65 5 * 13 11 %e A322105 9 75 3 * 5^2 13 %e A322105 10 100 2^2 * 5^2 15 %e A322105 11 120 2^3 * 3 * 5 22 %e A322105 12 145 5 * 29 23 %e A322105 13 195 3 * 5 * 13 35 %e A322105 14 300 2^2 * 3 * 5^2 41 %e A322105 15 325 5^2 * 13 51 %e A322105 16 390 2 * 3 * 5 * 13 57 %e A322105 17 520 2^3 * 5 * 13 63 %e A322105 18 585 3^2 * 5 * 13 64 %e A322105 19 600 2^3 * 3 * 5^2 72 %e A322105 20 650 2 * 5^2 * 13 82 %e A322105 21 780 2^2 * 3 * 5 * 13 94 %e A322105 22 975 3 * 5^2 * 13 135 %e A322105 23 1105 5 * 13 * 17 143 %e A322105 24 1300 2^2 * 5^2 * 13 158 %e A322105 25 1560 2^3 * 3 * 5 * 13 171 %e A322105 26 1700 2^2 * 5^2 * 17 182 %e A322105 27 1950 2 * 3 * 5^2 * 13 210 %e A322105 28 2550 2 * 3 * 5^2 * 17 216 %e A322105 29 2600 2^3 * 5^2 * 13 251 %e A322105 30 3315 3 * 5 * 13 * 17 333 %e A322105 31 3900 2^2 * 3 * 5^2 * 13 367 %e A322105 32 4420 2^2 * 5 * 13 * 17 373 %e A322105 33 5100 2^2 * 3 * 5^2 * 17 406 %e A322105 34 5525 5^2 * 13 * 17 496 %e A322105 35 6630 2 * 3 * 5 * 13 * 17 525 %e A322105 36 7800 2^3 * 3 * 5^2 * 13 605 %e A322105 37 8840 2^3 * 5 * 13 * 17 610 %e A322105 38 10200 2^3 * 3 * 5^2 * 17 660 %e A322105 39 11050 2 * 5^2 * 13 * 17 735 %e A322105 40 13260 2^2 * 3 * 5 * 13 * 17 897 %e A322105 41 16575 3 * 5^2 * 13 * 17 1132 %e A322105 42 22100 2^2 * 5^2 * 13 * 17 1276 %t A322105 okQ[x_, y_, z_] := If[x + y <= z, False, Module[{s = (x + y + z)/2}, IntegerQ[ Sqrt[s(s-x)(s-y)(s-z)]]] ]; a[n_] := Module[{num = 0}, Do[Do[If[okQ[x, y, n], num++], {x, 1, y}], {y, 1, n}]; num]; amax=-1; s={}; Do[a1=a[n]; If[a1 > amax, AppendTo[s, n]; amax=a1],{n,1,100}]; s %Y A322105 Cf. A054875, A096467, A120130, A306626. %K A322105 nonn %O A322105 1,2 %A A322105 _Amiram Eldar_ and _Peter Munn_, Nov 26 2018 %E A322105 a(43)-a(48) from _Giovanni Resta_, Nov 03 2019