cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322112 Number of non-isomorphic self-dual connected multiset partitions of weight n with no singletons and multiset density -1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 4, 4, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(10) = 9 multiset partitions:
  {{11}}  {{111}}  {{1111}}  {{11111}}    {{111111}}    {{1111111}}
                             {{11}{122}}  {{22}{1122}}  {{111}{1222}}
                                                        {{22}{11222}}
                                                        {{11}{12}{233}}
.
  {{11111111}}      {{111111111}}        {{1111111111}}
  {{111}{11222}}    {{1111}{12222}}      {{1111}{112222}}
  {{22}{112222}}    {{22}{1122222}}      {{22}{11222222}}
  {{11}{122}{233}}  {{222}{111222}}      {{222}{1112222}}
                    {{11}{11}{12233}}    {{111}{122}{2333}}
                    {{11}{113}{2233}}    {{22}{113}{23333}}
                    {{12}{111}{2333}}    {{22}{1133}{2233}}
                    {{22}{113}{2333}}    {{33}{33}{112233}}
                    {{12}{13}{22}{344}}  {{11}{14}{223}{344}}
		

Crossrefs