cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320798 Number of non-isomorphic weight-n connected antichains of non-constant multisets with multiset density -1.

Original entry on oeis.org

0, 1, 2, 5, 9, 24, 51, 134, 328, 868
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 24 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}
          {{123}}  {{1222}}    {{12222}}    {{112222}}
                   {{1233}}    {{12233}}    {{112233}}
                   {{1234}}    {{12333}}    {{122222}}
                   {{13}{23}}  {{12344}}    {{122333}}
                               {{12345}}    {{123333}}
                               {{12}{233}}  {{123344}}
                               {{13}{233}}  {{123444}}
                               {{14}{234}}  {{123455}}
                                            {{123456}}
                                            {{112}{233}}
                                            {{122}{233}}
                                            {{12}{2333}}
                                            {{123}{344}}
                                            {{124}{344}}
                                            {{125}{345}}
                                            {{13}{2233}}
                                            {{13}{2333}}
                                            {{13}{2344}}
                                            {{133}{233}}
                                            {{14}{2344}}
                                            {{15}{2345}}
                                            {{13}{24}{34}}
                                            {{14}{24}{34}}
		

Crossrefs

A329555 Smallest MM-number of a clutter (connected antichain) of n distinct sets.

Original entry on oeis.org

1, 2, 377, 16211, 761917
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Spanning cutters of distinct sets are counted by A048143.
MM-numbers of connected weak-antichains are A329559.
MM-numbers of sets of sets are A302494.
The smallest BII-number of a clutter with n edges is A329627.
Not requiring the edges to form an antichain gives A329552.
Connected numbers are A305078.
Stable numbers are A316476.
Other MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A329627 Smallest BII-number of a clutter (connected antichain) with n edges.

Original entry on oeis.org

0, 1, 20, 52, 308, 820, 2868, 68404, 199476, 723764
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system is an antichain if no edge is a proper subset of any other.
For n > 1, a(n) appears to be the number whose binary indices are the first n terms of A018900.

Examples

			The sequence of terms together with their corresponding set-systems begins:
       0: {}
       1: {{1}}
      20: {{1,2},{1,3}}
      52: {{1,2},{1,3},{2,3}}
     308: {{1,2},{1,3},{2,3},{1,4}}
     820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
    2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
   68404: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5}}
  199476: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5}}
  723764: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,5},{2,5},{3,5}}
		

Crossrefs

The version for MM-numbers is A329555.
BII-numbers of clutters are A326750.
Clutters of sets are counted by A048143.
Minimum BII-numbers of connected set-systems are A329625.
Minimum BII-numbers of antichains are A329626.
MM-numbers of connected weak antichains of multisets are A329559.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,10000],stableQ[bpe/@bpe[#]]&&Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]
Showing 1-3 of 3 results.