cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322114 Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.

This page as a plain text file.
%I A322114 #10 Mar 23 2023 23:08:44
%S A322114 1,1,1,0,1,1,0,1,3,2,0,0,3,6,3,0,0,2,11,14,6,0,0,1,13,35,33,11,0,0,0,
%T A322114 10,61,112,81,23,0,0,0,5,75,262,347,204,47,0,0,0,2,68,463,1059,1085,
%U A322114 526,106,0,0,0,1,49,625,2458,4091,3348,1376,235
%N A322114 Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.
%H A322114 Andrew Howroyd, <a href="/A322114/b322114.txt">Table of n, a(n) for n = 0..1325</a>
%e A322114 Triangle begins:
%e A322114    1
%e A322114    1   1
%e A322114    0   1   1
%e A322114    0   1   3   2
%e A322114    0   0   3   6   3
%e A322114    0   0   2  11  14   6
%e A322114    0   0   1  13  35  33  11
%e A322114 Non-isomorphic representatives of the graphs counted in row 4:
%e A322114   {{2}{3}{12}{13}}   {{4}{12}{23}{34}}   {{13}{24}{35}{45}}
%e A322114   {{2}{3}{13}{23}}   {{4}{13}{23}{34}}   {{14}{25}{35}{45}}
%e A322114   {{3}{12}{13}{23}}  {{4}{13}{24}{34}}   {{15}{25}{35}{45}}
%e A322114                      {{4}{14}{24}{34}}
%e A322114                      {{12}{13}{24}{34}}
%e A322114                      {{14}{23}{24}{34}}
%o A322114 (PARI)
%o A322114 InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
%o A322114 permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o A322114 edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
%o A322114 G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
%o A322114 T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
%o A322114 {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ _Andrew Howroyd_, Oct 22 2019
%Y A322114 Row sums are A191970. Last column is A000055.
%Y A322114 Cf. A000664, A007716, A007718, A007719, A054923, A191646, A275421, A317533, A321254.
%K A322114 nonn,tabl
%O A322114 0,9
%A A322114 _Gus Wiseman_, Nov 26 2018
%E A322114 Terms a(28) and beyond from _Andrew Howroyd_, Oct 22 2019