cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322115 Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.

This page as a plain text file.
%I A322115 #16 May 18 2023 01:55:39
%S A322115 1,1,1,1,2,1,1,4,4,2,1,6,11,9,3,1,9,25,34,20,6,1,12,52,104,99,49,11,1,
%T A322115 16,94,274,387,298,118,23,1,20,162,645,1295,1428,881,300,47,1,25,263,
%U A322115 1399,3809,5803,5088,2643,765,106,1,30,407,2823,10187,20645,24606,17872,7878,1998,235
%N A322115 Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.
%H A322115 Andrew Howroyd, <a href="/A322115/b322115.txt">Table of n, a(n) for n = 0..1274</a>
%e A322115 Triangle begins:
%e A322115   1
%e A322115   1   1
%e A322115   1   2   1
%e A322115   1   4   4   2
%e A322115   1   6  11   9   3
%e A322115   1   9  25  34  20   6
%e A322115   1  12  52 104  99  49  11
%o A322115 (PARI)
%o A322115 EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
%o A322115 InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
%o A322115 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o A322115 edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
%o A322115 G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
%o A322115 R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
%o A322115 { my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ _Andrew Howroyd_, Nov 30 2018
%Y A322115 Row sums are A007719. Diagonal k = n-1 is A000055.
%Y A322115 Cf. A000664, A007716, A007718, A191646, A191970, A275421, A317533, A322114.
%K A322115 nonn,tabl
%O A322115 0,5
%A A322115 _Gus Wiseman_, Nov 26 2018
%E A322115 Terms a(28) and beyond from _Andrew Howroyd_, Nov 30 2018