cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322131 In the decimal expansion of n, replace each digit d with 2*d.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 210, 212, 214, 216, 218, 40, 42, 44, 46, 48, 410, 412, 414, 416, 418, 60, 62, 64, 66, 68, 610, 612, 614, 616, 618, 80, 82, 84, 86, 88, 810, 812, 814, 816, 818, 100, 102, 104, 106, 108, 1010, 1012, 1014
Offset: 0

Views

Author

Rémy Sigrist, Nov 27 2018

Keywords

Comments

This is an operation on digit strings: 1066 becomes 201212, for example. 86420 becomes 1612840. The result is always even - see A330336. - N. J. A. Sloane, Dec 17 2019
This sequence is a variant of A124108 in decimal base.

Examples

			For n = 109:
- we replace "1" with "2", "0" with "0" and "9" with "18",
- hence a(109) = 2018.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    local m,d;
    d:= n mod 10; m:= floor(n/10);
    if d >= 5 then 100*procname(m) + 2*d
    else 10*procname(m)+2*d
    fi
    end proc:
    f(0):= 0:
    map(f, [$0..100]); # Robert Israel, Nov 28 2018
  • Mathematica
    a[n_] := FromDigits@Flatten@IntegerDigits[2*IntegerDigits[n]]; Array[a, 60, 0] (* Amiram Eldar, Nov 28 2018 *)
  • PARI
    a(n, base=10) = my (d=digits(n, base), v=0); for (i=1, #d, v = v*base^max(1,#digits(2*d[i],base)) + 2*d[i]); v
    
  • Python
    def A322131(n):
       return int(''.join(str(int(d)*2) for d in str(n))) # Chai Wah Wu, Nov 29 2018

Formula

A061581(n+1) = a(A061581(n)).
A066686(a(n), a(k)) = a(A066686(n, k)) for any n > 0 and k > 0.
a(10*n + d) = 10*a(n) + 2*d for any n >= 0 and d = 0..4.
a(10*n + d) = 100*a(n) + 2*d for any n >= 0 and d = 5..9.
G.f. g(x) satisfies g(x) = (2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + 18*x^9)/(1-x^10) + (10 + 10*x + 10*x^2 + 10*x^3 + 10*x^4 + 100*x^5 + 100*x^6 + 100*x^7 + 100*x^8 + 100*x^9)*g(x^10). - Robert Israel, Nov 28 2018