A322131 In the decimal expansion of n, replace each digit d with 2*d.
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 210, 212, 214, 216, 218, 40, 42, 44, 46, 48, 410, 412, 414, 416, 418, 60, 62, 64, 66, 68, 610, 612, 614, 616, 618, 80, 82, 84, 86, 88, 810, 812, 814, 816, 818, 100, 102, 104, 106, 108, 1010, 1012, 1014
Offset: 0
Examples
For n = 109: - we replace "1" with "2", "0" with "0" and "9" with "18", - hence a(109) = 2018.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) option remember; local m,d; d:= n mod 10; m:= floor(n/10); if d >= 5 then 100*procname(m) + 2*d else 10*procname(m)+2*d fi end proc: f(0):= 0: map(f, [$0..100]); # Robert Israel, Nov 28 2018
-
Mathematica
a[n_] := FromDigits@Flatten@IntegerDigits[2*IntegerDigits[n]]; Array[a, 60, 0] (* Amiram Eldar, Nov 28 2018 *)
-
PARI
a(n, base=10) = my (d=digits(n, base), v=0); for (i=1, #d, v = v*base^max(1,#digits(2*d[i],base)) + 2*d[i]); v
-
Python
def A322131(n): return int(''.join(str(int(d)*2) for d in str(n))) # Chai Wah Wu, Nov 29 2018
Formula
a(10*n + d) = 10*a(n) + 2*d for any n >= 0 and d = 0..4.
a(10*n + d) = 100*a(n) + 2*d for any n >= 0 and d = 5..9.
G.f. g(x) satisfies g(x) = (2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + 18*x^9)/(1-x^10) + (10 + 10*x + 10*x^2 + 10*x^3 + 10*x^4 + 100*x^5 + 100*x^6 + 100*x^7 + 100*x^8 + 100*x^9)*g(x^10). - Robert Israel, Nov 28 2018
Comments