This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322133 #8 Jan 15 2024 16:29:44 %S A322133 1,0,1,0,2,1,0,3,2,1,0,5,8,3,1,0,7,17,12,3,1,0,11,46,45,18,4,1,0,15, %T A322133 94,141,76,23,4,1,0,22,212,432,333,124,30,5,1,0,30,416,1231,1254,622, %U A322133 178,37,5,1,0,42,848,3346,4601,2914,1058,252,45,6,1 %N A322133 Regular triangle read by rows where T(n,k) is the number of non-isomorphic connected multiset partitions of weight n with k vertices. %C A322133 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A322133 Andrew Howroyd, <a href="/A322133/b322133.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A322133 Triangle begins: %e A322133 1 %e A322133 0 1 %e A322133 0 2 1 %e A322133 0 3 2 1 %e A322133 0 5 8 3 1 %e A322133 0 7 17 12 3 1 %e A322133 0 11 46 45 18 4 1 %e A322133 0 15 94 141 76 23 4 1 %e A322133 0 22 212 432 333 124 30 5 1 %e A322133 0 30 416 1231 1254 622 178 37 5 1 %e A322133 0 42 848 3346 4601 2914 1058 252 45 6 1 %e A322133 Non-isomorphic representatives of the multiset partitions counted in row 4: %e A322133 {{1,1,1,1}} {{1,1,2,2}} {{1,2,3,3}} {{1,2,3,4}} %e A322133 {{1},{1,1,1}} {{1,2,2,2}} {{1,3},{2,3}} %e A322133 {{1,1},{1,1}} {{1},{1,2,2}} {{3},{1,2,3}} %e A322133 {{1},{1},{1,1}} {{1,2},{1,2}} %e A322133 {{1},{1},{1},{1}} {{1,2},{2,2}} %e A322133 {{2},{1,2,2}} %e A322133 {{1},{2},{1,2}} %e A322133 {{2},{2},{1,2}} %o A322133 (PARI) \\ Needs G(m,n) defined in A317533 (faster PARI). %o A322133 InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)} %o A322133 T(n)={[Vecrev(p) | p <- Vec(1 + InvEulerMTS(y^n*G(n,n) + sum(k=0, n-1, y^k*(1 - y)*G(k,n))))]} %o A322133 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 15 2024 %Y A322133 Row sums are A007718. %Y A322133 Cf. A000664, A007716, A054923, A191646, A191970, A275421, A286520, A317672, A319719, A321155, A321254, A322114. %K A322133 nonn,tabl %O A322133 0,5 %A A322133 _Gus Wiseman_, Nov 27 2018