This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322143 #4 Dec 01 2018 09:18:50 %S A322143 1,1,1,1,1,0,1,1,-2,1,1,1,-8,1,2,1,1,-26,1,6,0,1,1,-80,1,26,-2,0,1,1, %T A322143 -242,1,126,-8,-6,1,1,1,-728,1,626,-26,-48,1,1,1,1,-2186,1,3126,-80, %U A322143 -342,1,7,2,1,1,-6560,1,15626,-242,-2400,1,73,6,0,1,1,-19682,1,78126,-728,-16806,1,703,26,-10,0 %N A322143 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, d==1 (mod 4)} d^k - Sum_{d|n, d==3 (mod 4)} d^k. %H A322143 <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a> %F A322143 G.f. of column k: Sum_{j>=1} (-1)^(j-1)*(2*j - 1)^k*x^(2*j-1)/(1 - x^(2*j-1)). %e A322143 Square array begins: %e A322143 1, 1, 1, 1, 1, 1, ... %e A322143 1, 1, 1, 1, 1, 1, ... %e A322143 0, -2, -8, -26, -80, -242, ... %e A322143 1, 1, 1, 1, 1, 1, ... %e A322143 2, 6, 26, 126, 626, 3126, ... %e A322143 0, -2, -8, -26, -80, -242, ... %t A322143 Table[Function[k, SeriesCoefficient[Sum[(-1)^(j - 1) (2 j - 1)^k x^(2 j - 1)/(1 - x^(2 j - 1)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten %Y A322143 Columns k=0..12 give A002654, A050457, A002173, A050459, A050456, A321821, A321822, A321823, A321824, A321825, A321826, A321827, A321828. %Y A322143 Cf. A109974, A322081, A322082, A322083, A322084. %K A322143 sign,tabl %O A322143 1,9 %A A322143 _Ilya Gutkovskiy_, Nov 28 2018