cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322148 Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.

This page as a plain text file.
%I A322148 #8 Nov 29 2018 15:10:51
%S A322148 1,1,1,1,3,3,1,6,16,16,1,10,51,127,125,1,15,126,574,1347,1296,1,21,
%T A322148 266,1939,8050,17916,16807,1,28,504,5440,35210,135156,286786,262144,1,
%U A322148 36,882,13387,125730,736401,2642122,5368728,4782969,1,45,1452,29854,388190,3239491,17424610,58925728,115089813,100000000
%N A322148 Regular triangle where T(n,k) is the number of labeled connected multigraphs with loops with n edges and k vertices.
%H A322148 Andrew Howroyd, <a href="/A322148/b322148.txt">Table of n, a(n) for n = 0..1274</a>
%e A322148 Triangle begins:
%e A322148   1
%e A322148   1     1
%e A322148   1     3     3
%e A322148   1     6    16    16
%e A322148   1    10    51   127   125
%e A322148   1    15   126   574  1347  1296
%e A322148   1    21   266  1939  8050 17916 16807
%t A322148 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
%t A322148 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A322148 Table[If[n==0,1,Length[Select[multsubs[multsubs[Range[k],2],n],And[Union@@#==Range[k],Length[csm[#]]==1]&]]],{n,0,5},{k,1,n+1}]
%o A322148 (PARI)
%o A322148 Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
%o A322148 M(n)={Mat([Col(p, -(n+1)) | p<-Connected(vector(2*n, j, 1/(1 - x + O(x*x^n) )^binomial(j+1, 2)))[1..n+1]])}
%o A322148 { my(T=M(10)); for(n=1, #T, print(T[n,][1..n])) } \\ _Andrew Howroyd_, Nov 29 2018
%Y A322148 Row sums are A322152. Last column is A000272.
%Y A322148 Cf. A007718, A191646, A191970, A275421, A321155, A322114, A322115, A322137, A322147.
%K A322148 nonn,tabl
%O A322148 0,5
%A A322148 _Gus Wiseman_, Nov 28 2018
%E A322148 Offset corrected and terms a(28) and beyond from _Andrew Howroyd_, Nov 29 2018