cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322150 Number of minimum shadings of an n X n Hitori solution grid as defined in A322125.

This page as a plain text file.
%I A322150 #6 Nov 28 2018 22:36:13
%S A322150 1,4,6,74,6,900,3230
%N A322150 Number of minimum shadings of an n X n Hitori solution grid as defined in A322125.
%C A322150 Equivalently, the number of n X n binary matrices with the least possible number of 1's such that all 0's are connected and no 1 is adjacent to another and that it is not possible to set another 1 without either placing it adjacent to another 1 or disconnecting the 0's. The least possible number of 1's is given by A322125(n).
%e A322150 Case n=3: a(3) = 6: up to rotation and reflection there are 2 solutions:
%e A322150   X . .  :  . X .
%e A322150   . X .  :  . . .
%e A322150   . . .  :  . X .
%e A322150 .
%e A322150 Case n=5: a(5) = 6: up to rotation and reflection there are 2 solutions:
%e A322150   . . X . .  :   . . . X .
%e A322150   . X . X .  :   X . . . .
%e A322150   . . . . .  :  . . X . .
%e A322150   . . . . .  :  . . . . X
%e A322150   . X . X .  :  . X . . .
%e A322150 .
%e A322150 For an n X m grid the number of minimum shadings are as follows:
%e A322150 ======================================================
%e A322150 n\m| 1  2  3  4  5   6    7   8    9   10    11 12
%e A322150 ---+--------------------------------------------------
%e A322150 1  | 1  2  1  1  1   1    1   1    1    1     1  1 ...
%e A322150 2  | 2  4  2 12 12   4   48  32    8  160    80 16 ...
%e A322150 3  | 1  2  6  1 13  53   11 100    6  113     2 88 ...
%e A322150 4  | 1 12  1 74 11  44  139 512 1745 5764 19209 96 ...
%e A322150 5  | 1 12 13 11  6   3 2035 ...
%e A322150 6  | 1  4 53 44  3 900   90 ...
%e A322150 ...
%e A322150 An interesting tight solution set occurs with the 5 X 6 grid. The 3 solutions are:
%e A322150   . X . . .  :  . . X . .  :  . . . X .
%e A322150   . . . . X  :  . X . X .  :  X . . . .
%e A322150   . . . X .  :  . . . . .  :  . X . . .
%e A322150   . X . . .  :  . . . . .  :  . . . X .
%e A322150   X . . . .  :  . X . X .  :  . . . . X
%e A322150   . . . X .  :  . . X . .  :  . X . . .
%Y A322150 Cf. A322125.
%K A322150 nonn,hard,more
%O A322150 1,2
%A A322150 _Andrew Howroyd_, Nov 28 2018