This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322163 #23 May 04 2019 14:01:51 %S A322163 0,1,2,2,3,3,4,3,3,4,5,3,4,5,4,3,4,4,5,4,5,6,7,4,4,5,4,5,6,4,5,4,5,5, %T A322163 5,4,5,6,5,4,5,5,6,6,4,5,6,4,5,5,5,5,6,4,5,4,5,6,7,4,5,6,4,4,5,6,7,5, %U A322163 6,5,6,4,5,6,5,6,6,5,6,4,4,5,6,4,5,6,7 %N A322163 Minimal number of steps needed to get from n to 1, where for n > 1 the next step is to either n-1 or max(a,b) for any a > 1 and b > 1 such that ab=n. %H A322163 Antoine Mathys, <a href="/A322163/b322163.txt">Table of n, a(n) for n = 1..20000</a> %e A322163 For n=1, there is nothing to do. Hence a(1)=0. %e A322163 For n=4, the possible sequences of steps are 4->3->2->1 and 4->2->1. Thus the minimal number of steps needed to reach 1 is a(4)=2. %e A322163 For n=6, the possible sequences of steps are 6->5->4->3->2->1, 6->5->4->2->1 and 6->3->2->1. Thus the minimal number of steps needed to reach 1 is a(6)=3. %t A322163 divs[n_] := Append[Select[Most[Divisors[n]], #>= Sqrt[n] &], n-1]; a[0] = 0; a[1] = 0; a[n_] := a[n] = 1 + Min[a/@divs[n]]; Array[a, 100] (* _Amiram Eldar_, Nov 29 2018 *) %o A322163 (C) %o A322163 #include <stdio.h> %o A322163 int main () %o A322163 { %o A322163 const int N = 100; %o A322163 int steps[N + 1]; %o A322163 steps[1] = 0; %o A322163 for (int n = 2; n <= N; n++) { %o A322163 int next = n - 1; %o A322163 for (int i = n - 1; i * i >= n; i--) { %o A322163 if (n % i == 0) { %o A322163 if (steps[i] < steps[next]) { %o A322163 next = i; %o A322163 } %o A322163 } %o A322163 } %o A322163 steps[n] = 1 + steps[next]; %o A322163 } %o A322163 for (int n = 1; n <= N; n++) { %o A322163 printf ("%d %d\n", n, steps[n]); %o A322163 } %o A322163 } %o A322163 (PARI) seq(n)={my(v=vector(n)); for(n=2, n, my(m=v[n-1]); fordiv(n, d, if(d>=n/d && d<n, m=min(m, v[d]))); v[n]=m+1); v} \\ _Andrew Howroyd_, Nov 29 2018 %K A322163 nonn %O A322163 1,3 %A A322163 _Antoine Mathys_, Nov 29 2018