This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322174 #15 Dec 06 2018 19:22:53 %S A322174 7,37,43,61,151,223,229,241,271,277,307,331,337,349,367,523,691,709, %T A322174 733,863,907,1009,1033,1051,1069,1103,1109,1123,1223,1231,1249,1283, %U A322174 1289,1297,1301,1303,1321,1327,1381,1423,1429,1447,1471,1483,1531,1549,1567,1597,1621,1627,1657,1663,1741 %N A322174 Primes that are not base-6 deletable primes (written in base 10). %C A322174 A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. %C A322174 Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed. %C A322174 Complement of all primes and A322173. %H A322174 Robert Price, <a href="/A322174/b322174.txt">Table of n, a(n) for n = 1..1258</a> %t A322174 b = 6; d = {}; %t A322174 p = Select[Range[2, 10000], PrimeQ[#] &]; %t A322174 For[i = 1, i <= Length[p], i++, %t A322174 c = IntegerDigits[p[[i]], b]; %t A322174 If[Length[c] == 1, AppendTo[d, p[[i]]]; Continue[]]; %t A322174 For[j = 1, j <= Length[c], j++, %t A322174 t = Delete[c, j]; %t A322174 If[t[[1]] == 0, Continue[]]; %t A322174 If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]]; Break[]]]]; Complement[Table[Prime[n], {n, PrimePi[Last[d]]}], d] (* _Robert Price_, Dec 06 2018 *) %Y A322174 Cf. A080608, A080603, A096235-A096246, A321657. %K A322174 nonn,base,easy %O A322174 1,1 %A A322174 _Robert Price_, Nov 29 2018