cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322177 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^prime(k_j)).

This page as a plain text file.
%I A322177 #6 Dec 01 2018 09:18:57
%S A322177 0,9,25,27,121,34,289,243,125,130,961,52,1681,298,146,2187,3481,134,
%T A322177 4489,148,314,970,6889,268,1331,1690,3125,316,11881,155,16129,177147,
%U A322177 986,3490,410,152,24649,4498,1706,364,32041,323,36481,988,246,6898,44521,2212,4913,1340
%N A322177 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^prime(k_j)).
%e A322177 a(12) = a(2^2 * 3^1) = prime(2)^prime(2) + prime(3)^prime(1) = 3^3 + 5^2 = 52.
%t A322177 a[n_] := Plus @@ (Prime[#[[1]]]^Prime[#[[2]]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 50}]
%o A322177 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(f[k,1])^prime(f[k,2]);); vecsum(f[,1]); \\ _Michel Marcus_, Nov 30 2018
%Y A322177 Cf. A000040, A008475, A222416, A304251, A321874.
%K A322177 nonn
%O A322177 1,2
%A A322177 _Ilya Gutkovskiy_, Nov 30 2018