cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322181 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) + A321769(n, k) + A321770(n, k).

Original entry on oeis.org

12, 30, 70, 40, 56, 176, 126, 208, 408, 198, 154, 234, 84, 90, 330, 260, 546, 1026, 476, 456, 736, 286, 418, 1218, 828, 1178, 2378, 1188, 800, 1160, 390, 340, 900, 570, 644, 1364, 714, 374, 494, 144, 132, 532, 442, 1044, 1924, 874, 918, 1518, 608, 1116, 3196
Offset: 1

Views

Author

Rémy Sigrist, Nov 30 2018

Keywords

Comments

This sequence gives the perimeters of the primitive Pythagorean triangles corresponding to the primitive Pythagorean triples in the tree described in A321768.
If we order the terms in this sequence and keep duplicates then we obtain A024364.

Examples

			The first rows are:
   12
   30, 70, 40
   56, 176, 126, 208, 408, 198, 154, 234, 84
T(1,1) corresponds to the perimeter of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 + 4 + 5 = 12.
		

Crossrefs

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] + t[2, 1] + t[3, 1])

Formula

Empirically:
- T(n, 1) = A002939(n+1),
- T(n, (3^(n-1) + 1)/2) = A001542(n+1),
- T(n, 3^(n-1)) = A033586(n).