A322181 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) + A321769(n, k) + A321770(n, k).
12, 30, 70, 40, 56, 176, 126, 208, 408, 198, 154, 234, 84, 90, 330, 260, 546, 1026, 476, 456, 736, 286, 418, 1218, 828, 1178, 2378, 1188, 800, 1160, 390, 340, 900, 570, 644, 1364, 714, 374, 494, 144, 132, 532, 442, 1044, 1924, 874, 918, 1518, 608, 1116, 3196
Offset: 1
Examples
The first rows are: 12 30, 70, 40 56, 176, 126, 208, 408, 198, 154, 234, 84 T(1,1) corresponds to the perimeter of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 + 4 + 5 = 12.
Links
Programs
-
PARI
M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]]; T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] + t[2, 1] + t[3, 1])
Comments