This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322205 #3 Dec 01 2018 10:22:10 %S A322205 1,7,31,179,1006,6265,38767,245515,1562368,10017042,64512251, %T A322205 417238925,2707475161,17620153929,114955811686,751616795579, %U A322205 4923689695592,32308786002880,212327989773919,1397281521970074,9206478467570842,60727722789611357,400978991944396343,2650087221531556021,17529515713716302906,116043807648704288815,768759815833955021344,5096278545391603271517 %N A322205 a(n) = coefficient of x^(2*n)*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)) for n >= 1. %F A322205 a(n) = A322200(2*n,n)/3. %e A322205 G.f.: L(x) = x + 7*x^2/2 + 31*x^3/3 + 179*x^4/4 + 1006*x^5/5 + 6265*x^6/6 + 38767*x^7/7 + 245515*x^8/8 + 1562368*x^9/9 + 10017042*x^10/10 + 64512251*x^11/11 + 417238925*x^12/12 + ... %e A322205 such that %e A322205 exp( L(x) ) = 1 + x + 4*x^2 + 14*x^3 + 63*x^4 + 294*x^5 + 1526*x^6 + 8157*x^7 + 45332*x^8 + 257378*x^9 + 1489539*x^10 + 8744722*x^11 + 51965701*x^12 + ... + A322206(n)*x^n + ... %o A322205 (PARI) %o A322205 {L = sum(n=1,81, -log(1 - (x^n + y^n) +O(x^81) +O(y^81)) );} %o A322205 {a(n) = polcoeff( n*polcoeff( L,2*n,x),n,y)} %o A322205 for(n=1,35, print1( a(n),", ") ) %Y A322205 Cf. A322200, A322206. %K A322205 nonn %O A322205 1,2 %A A322205 _Paul D. Hanna_, Dec 01 2018