cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322212 G.f.: P(x,y) = Product_{n>=1} (1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals.

Table of values

n a(n)
0 1
1 -1
2 -1
3 -1
4 0
5 -1
6 0
7 1
8 1
9 0
10 0
11 1
12 0
13 1
14 0
15 1
16 1
17 1
18 1
19 1
20 1
21 0
22 0
23 0
24 -2
25 0
26 0
27 0
28 1
29 0
30 0
31 0
32 0
33 0
34 0
35 1
36 0
37 -1
38 0
39 -1
40 -2
41 -1
42 0
43 -1
44 0
45 0
46 -1
47 -1
48 -2
49 -1
50 -1
51 -2
52 -1
53 -1
54 0
55 0
56 -1
57 0
58 0
59 1
60 -2
61 1
62 0
63 0
64 -1
65 0
66 0
67 -1
68 -1
69 0
70 -1
71 0
72 0
73 -1
74 0
75 -1
76 -1
77 0
78 -1
79 -1
80 0
81 0
82 -1
83 0
84 0
85 0
86 -1
87 0
88 0
89 -1
90 -1
91 0
92 0
93 -1
94 1
95 1
96 1
97 1
98 1
99 1
100 1
101 1
102 -1
103 0
104 0
105 0
106 0
107 1
108 2
109 2
110 2
111 3
112 2
113 3
114 2
115 2
116 2
117 1
118 0
119 0
120 -1
121 0
122 -1
123 1
124 0
125 -2
126 0
127 0
128 0
129 0
130 -2
131 0
132 1
133 -1
134 0
135 -1
136 0
137 1
138 1
139 2
140 1
141 3
142 2
143 2
144 2
145 2
146 2
147 3
148 1
149 2
150 1
151 1
152 0
153 0
154 1
155 0
156 1
157 1
158 2
159 0
160 1
161 1
162 1
163 1
164 0
165 2
166 1
167 1
168 0
169 1
170 0
171 0
172 1
173 1
174 2
175 2
176 2
177 -1
178 1
179 1
180 4
181 1
182 1
183 -1
184 2
185 2
186 2
187 1
188 1
189 0
190 0
191 1
192 0
193 0
194 0
195 0
196 -1
197 0
198 -1
199 -2
200 -2
201 -1
202 0
203 -1
204 0
205 0
206 0
207 0
208 1
209 0
210 0
211 1
212 1
213 0
214 0
215 -1
216 -2
217 -1
218 -2
219 -2
220 -2
221 -2
222 -2
223 -1
224 -2
225 -1
226 0
227 0
228 1
229 1
230 0
231 0
232 1
233 0
234 0
235 0
236 1
237 1
238 -3
239 -1
240 0
241 0
242 0
243 0
244 -1
245 -3
246 1
247 1
248 0
249 0
250 0
251 1
252 0

List of values

[1, -1, -1, -1, 0, -1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, 0, 0, -1, -1, -2, -1, -1, -2, -1, -1, 0, 0, -1, 0, 0, 1, -2, 1, 0, 0, -1, 0, 0, -1, -1, 0, -1, 0, 0, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 1, 0, 0, -1, 0, -1, 1, 0, -2, 0, 0, 0, 0, -2, 0, 1, -1, 0, -1, 0, 1, 1, 2, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 1, 1, 2, 2, 2, -1, 1, 1, 4, 1, 1, -1, 2, 2, 2, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, -1, -2, -2, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, -1, -2, -1, -2, -2, -2, -2, -2, -1, -2, -1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, -3, -1, 0, 0, 0, 0, -1, -3, 1, 1, 0, 0, 0, 1, 0]