cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322215 G.f.: P(x,y) = Product_{n>=1} (1 - (x^n + y^n))^3, where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals.

Table of values

n a(n)
0 1
1 -3
2 -3
3 0
4 6
5 0
6 5
7 6
8 6
9 5
10 0
11 -9
12 -12
13 -9
14 0
15 0
16 -9
17 -6
18 -6
19 -9
20 0
21 -7
22 -9
23 6
24 -6
25 6
26 -9
27 -7
28 0
29 12
30 12
31 27
32 27
33 12
34 12
35 0
36 0
37 12
38 24
39 30
40 6
41 30
42 24
43 12
44 0
45 0
46 12
47 -12
48 -23
49 -24
50 -24
51 -23
52 -12
53 12
54 0
55 9
56 12
57 0
58 3
59 -15
60 -12
61 -15
62 3
63 0
64 12
65 9
66 0
67 -15
68 -36
69 -54
70 -60
71 -60
72 -60
73 -60
74 -54
75 -36
76 -15
77 0
78 0
79 -15
80 -24
81 -23
82 -30
83 -9
84 -12
85 -9
86 -30
87 -23
88 -24
89 -15
90 0
91 0
92 -15
93 -6
94 -12
95 51
96 57
97 54
98 54
99 57
100 51
101 -12
102 -6
103 -15
104 0
105 0
106 -15
107 6
108 24
109 66
110 33
111 69
112 96
113 69
114 33
115 66
116 24
117 6
118 -15
119 0
120 -11
121 -15
122 24
123 49
124 87
125 69
126 127
127 93
128 93
129 127
130 69
131 87
132 49
133 24
134 -15
135 -11

List of values

[1, -3, -3, 0, 6, 0, 5, 6, 6, 5, 0, -9, -12, -9, 0, 0, -9, -6, -6, -9, 0, -7, -9, 6, -6, 6, -9, -7, 0, 12, 12, 27, 27, 12, 12, 0, 0, 12, 24, 30, 6, 30, 24, 12, 0, 0, 12, -12, -23, -24, -24, -23, -12, 12, 0, 9, 12, 0, 3, -15, -12, -15, 3, 0, 12, 9, 0, -15, -36, -54, -60, -60, -60, -60, -54, -36, -15, 0, 0, -15, -24, -23, -30, -9, -12, -9, -30, -23, -24, -15, 0, 0, -15, -6, -12, 51, 57, 54, 54, 57, 51, -12, -6, -15, 0, 0, -15, 6, 24, 66, 33, 69, 96, 69, 33, 66, 24, 6, -15, 0, -11, -15, 24, 49, 87, 69, 127, 93, 93, 127, 69, 87, 49, 24, -15, -11]