This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322228 #12 Dec 29 2018 07:53:52 %S A322228 1,1,-3,-21,75,1475,-5005,-221389,593523,57764619,-89101881, %T A322228 -23273632371,953636541,13409519997705,23908442020749, %U A322228 -10469975115603501,-40844292735050541,10646036726696597027,66995992524016223543,-13672657170891872702719,-122282221141986787179519,21647316686778755963070321,256325163531592225309743129,-41426918732532942751217361155,-620418821801458605268716606275,94275566307675915918535250768725 %N A322228 a(n) = [x^n] Product_{k=1..n} (k + x - k*x^2), for n >= 0. %C A322228 a(n+1) = -2*(n+1) * A322227(n) + a(n), for n >= 1. %C A322228 a(n+1) = -n*(n+1)^2 * A322226(n) + a(n), for n >= 1. %H A322228 Paul D. Hanna, <a href="/A322228/b322228.txt">Table of n, a(n) for n = 0..300</a> %e A322228 The irregular triangle A322225 formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins %e A322228 1; %e A322228 1, 1, -1; %e A322228 2, 3, -3, -3, 2; %e A322228 6, 11, -12, -21, 12, 11, -6; %e A322228 24, 50, -61, -140, 75, 140, -61, -50, 24; %e A322228 120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120; %e A322228 720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720; %e A322228 5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040; ... %e A322228 in which the central terms equal this sequence. %e A322228 RELATED SEQUENCES. %e A322228 Note that the terms in the secondary diagonal A322227 in the above triangle %e A322228 [1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...] %e A322228 may be divided by triangular numbers to obtain A322226: %e A322228 [1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...]. %t A322228 a[n_] := SeriesCoefficient[Product[k + x - k x^2, {k, 1, n}], {x, 0, n}]; %t A322228 Array[a, 26, 0] (* _Jean-François Alcover_, Dec 29 2018 *) %o A322228 (PARI) {T(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)} %o A322228 /* Print the irregular triangle */ %o A322228 for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print("")) %o A322228 /* Print this sequence */ %o A322228 for(n=0, 30, print1( T(n, n), ", ")) %Y A322228 Cf. A322235, A322236, A322237. %Y A322228 Cf. A322238 (variant). %K A322228 sign %O A322228 0,3 %A A322228 _Paul D. Hanna_, Dec 15 2018