This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A322239 #3 Dec 12 2018 12:34:20 %S A322239 1,1,9,35,199,1005,5475,29469,161685,889759,4932641,27453471, %T A322239 153432241,860203135,4836370101,27257082723,153943314903,871064225325, %U A322239 4936953721755,28022734759125,159272314734843,906343638290133,5163219745287591,29442990216677985,168050775902585751,959985125666243145,5488145767630988595,31397773111113948245,179747041781229841375 %N A322239 a(n) = [x^n*y^n] 1/(1 - x - y - x^2 + x*y - y^2). %C A322239 Central terms of triangle A123603. %e A322239 Triangle A123603 of coefficients of x^(n-k)*y^k in 1/(1 - x - y - x^2 + x*y - y^2), for n >= 0 and k = 0..n, begins %e A322239 1; %e A322239 1, 1; %e A322239 2, 1, 2; %e A322239 3, 3, 3, 3; %e A322239 5, 5, 9, 5, 5; %e A322239 8, 10, 17, 17, 10, 8; %e A322239 13, 18, 36, 35, 36, 18, 13; %e A322239 21, 33, 69, 81, 81, 69, 33, 21; %e A322239 34, 59, 133, 167, 199, 167, 133, 59, 34; %e A322239 55, 105, 249, 345, 435, 435, 345, 249, 105, 55; %e A322239 89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ... %e A322239 in which the central terms form this sequence. %o A322239 (PARI) {a(n) = polcoeff( polcoeff( 1/(1 - x - y - x^2 + x*y - y^2 +x*O(x^n) +y*O(y^n)),n,x),n,y)} %o A322239 for(n=0,30, print1(a(n),", ")) %Y A322239 Cf. A123603, A192364. %K A322239 nonn %O A322239 0,3 %A A322239 _Paul D. Hanna_, Dec 12 2018